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Trapped Ion Chain as a Neural Network: Error Resistant Quantum Computation
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We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced
long range interactions. Such models permit one to store information distributed over the whole system.
The storage capacity of such a network, which depends on the phonon spectrum of the system, can be
controlled by changing the external trapping potential. We analyze the implementation of error resistant
universal quantum information processing in such systems.
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The Cirac-Zoller proposal of trapped ion computer [1]
has become one of the paradigmatic models to implement a
quantum computer [2]. Recently, spectacular experimental
progress in the realization of simple algorithms and im-
plementation of quantum logic has been achieved using a
few ionic qubits (c.f. [3]). Although the achievement of an
all-purpose quantum computer in the near future seems
difficult, one can be quite optimistic about the applications
of chains of trapped ions as quantum simulators. Recently,
it has been shown that long range (LR) pairwise interac-
tions between individual spins are induced in an ion trap,
when applying an additional state-dependent force acting
on the ions [4,5]. Also a state-dependent optical force can
evoke LR couplings and has been proposed to simulate
spin 1/2 chain systems [6].

Here we show that ion spin systems can serve to realize a
neural network (NN) model. NN are a prototype model of
parallel distributed memory [7,8], and have been inten-
sively studied by physicists since the famous paper by
Hopfield [9]. These disordered systems with LR interac-
tions typically present a large number of metastable (free)
energy minima, as in spin glasses [8]. These states can be
used to store information distributed over the whole sys-
tem. The patterns stored have large basins of attraction in
the thermodynamical sense, so that even fuzzy ones are
recognized as perfect ones. For this reason, attractive NNs
can be used as associative memory. At the same time, NNs
are robust, so that destroying even a large part of the
network does not necessarily diminish its performance.
The above listed properties make NNs interesting for
distributed quantum information (QI), where quantum
bits do not correspond to the internal states (spins) of
individual ions, but to patterns of the internal states of
the whole chain (all-up, all-down, half-up—half-down,
etc.). These patterns echo the lowest energy vibrational
modes of the system. The sign of the displacement of each
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ion with respect to its equilibrium position in a given mode
fixes the up/down state of the spin in the associated spin
pattern. Some approaches to exploit the potential of NN
models for QI processing have been discussed [10], also
with respect to entanglement generation [11]. Here we
propose, for the first time, a feasible implementation of
NN, and the realization of distributed QI using a chain of
trapped ions.

We first remind the readers the main features of the
Hopfield model [9], and discuss its similarities with the
effective Hamiltonian derived in Refs. [5,6], that suggest
the possibility of using a chain of trapped ions as a NN. We
find the ion-chain storage capacity and its robustness the
most appealing features of NN for distributed QI. Thus, the
question of ergodicity and, therefore, the ability of the
system to act as an associative memory is not considered
here. We show that the storage capacity, which is deter-
mined by the phonon spectrum of the system, can be
controlled by modifying the shape of the external axial
trapping potential and/or by applying longitudinal mag-
netic fields. Although this is a classical property of the
network, spin-ion systems also permit us to study quantum
NN by applying a transverse magnetic field or an optical
field that effectively simulates it. Here, we exploit the
storage capacity of the system to perform distributed QI,
i.e., single and two-qubit gates by applying appropriate
external axial and transverse magnetic fields. Transverse
magnetic fields should also permit tunneling processes
between stored patterns and to realize, for example, quan-
tum stimulated annealing [8,12]. This study is beyond the
scope of this Letter and will be treated elsewhere.

Following the models of Hopfield [9] and Little [13], a
neuron can be viewed as an Ising spin with two possible
states: “up” (S = +1) and “down” (§ = —1), depending
on whether the neuron has or has not fired an electromag-
netic signal, in a given interval of time [7]. The state of the
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network of N neurons at a certain time is defined by the
instantaneous configuration of all the spins {S;} at this time.
The dynamic evolution of these states is determined by the
symmetric interactions among neurons, J;; = Jj;. Also,
full connectivity is assumed; i.e., every neuron can receive
an input from any other one, and send an output to it. The
Hamiltonian reads

1 N N
i,j i

where h corresponds to an external magnetic field. The
interactions are determined by the patterns or configura-
tions of spins to be stored in the network. These patterns
will be learned if the system is able to accommodate them
as attractors, implying that a large set of initial configura-
tions of the network will be driven dynamically to those
patterns. A possible choice of the interactions is

1 2
Jij = N D vy, (2)
n=1

with i # j. The p sets of {£/} = =1 are the patterns to be
stored. The network will have the capacity of storage and
retrieval of information, if the dynamical stable configura-
tions (local minima) reached by the system {S;} are corre-
lated with the learned ones {£/}. Although the interactions
have been constructed to guarantee that certain specified
patterns are fixed points of the dynamics, the nonlinearity
of the dynamical process may induce additional attractors,
the so-called spurious states.

Recently it has been shown that the Hamiltonian de-
scribing a linear chain of harmonically trapped ions ex-
posed to a magnetic field gradient [5] or interacting with
convenient laser fields [6] can be transformed into an
effective spin-spin Hamiltonian with LR interactions

(Jf‘j), mediated by the collective motion of the ions:

1
H=-3 > Jtofot + Y Brot, 3)
a,i,j a,i
(F*) < M{u M3,
JE = R 4
v m Z w2 @

with @ = x, y, z, (i, j) label the ions, o are the Pauli
matrices, F'“ the force in the a direction experimented
by the ions, m the ion mass, and w, ,, the angular frequency
of the vibrational mode n. M{, are the unitary matrices that
diagonalize the vibrational Hamiltonian: M{, «{";M7, =
wi,nénm, where Kﬁ‘j are the elastic constants of the chain

[14]. The coefficient M}, gives the scaled amplitude of the
local oscillations of ion i around its equilibrium position,
when the collective vibrational mode 7 is excited. Thus, the
eigenvectors of M describe each ion’s contribution to a
given vibrational mode, while the eigenvalues provide the

frequencies w,, , of the collective modes.

The external trapping frequencies are chosen such that
the laser cooled ions crystallize in a linear chain (i.e.,
w, = w,; > w, ;) and the external forces act on the z
axis (i.e., F* = FY = 0), so that the index « is dropped.
Henceforth, we consider zero magnetic fields B; = 0 [15].
If we substitute the Pauli matrices in Eq. (3) by Ising spins
S = =1 (where the effective spin corresponds to the inter-
nal state of the ion), we recover Eq. (1) and the possibility
to implement a classical NN with this system arises. Never-
theless, there are some differences between both models.
First, in the Hopfield model, the interactions [Eq. (2)] are
determined by the patterns to be stored {£/} = *1, while
in the trapped ion chain, the interactions are fixed by the
collective modes of the system, i.e., the coefficients M; ,
that do not necessarily equal *1. Second, in Eq. (2), p
corresponds to the number of patterns to be stored, which
in the limit of large N (number of spins), is bounded from
above by p = 0.14N [7]. In Eq. (4), the sum extends over
the total number of vibrational modes which is larger than
the total number of stored patterns (spin configurations that
the system is able to recover). And finally, in the Hopfield
model all the patterns have the same weight while in the
ion chain each vibrational mode is weighted by 1/w?
[Eqg. (4)]. To reproduce as closely as possible a NN behav-
ior, the most relevant requirement is the degeneracy of the
vibrational modes. Moreover, the corresponding patterns
must have large basins of attraction; i.e., they should
correspond to sufficiently different spin configurations, so
that each one is dynamically recovered, even if several
spins are randomly flipped.

To check the feasibility of implementing a NN model in
these ion spin systems, we first find the phonon spectrum
using a standard diagonalization procedure, and impose the
learning rule; i.e., we calculate the spin interactions Jij,
mediated by the collective modes of the ions [Eq. (4)].
Then, we map a given vibrational mode into a spin con-
figuration (initial spin configuration), evaluate its energy
[Eq. (3)] and check its dynamical stability under spin flips
using a standard Metropolis algorithm in a classical
Monte Carlo code. This stability is essential for adiabatic
QI processing. Explicitly, from the initial configuration we
randomly flip r spins, and let the system evolve towards
equilibrium assuming a noiseless scenario. If the system
recovers the initial configuration, it is stable under the flip
of r spins. We define the initial overlap as m; =
(N — r)/N. After dynamical evolution, the final overlap
is given by m; = (N — 5)/N where s is the number of spins
that differ from the initial configuration. We repeat this
process over M initial configurations each with » random
spin flips. We evaluate statistically the final overlap with
the initial configuration as m, = (Z;VZI m;n j)/M, with n;
the number of times that the system reaches the configu-
ration with m;. The value of m; for which significant
decrease of ms occurs, is a good measure of the size of
the pattern’s basin of attraction. For the harmonic trapping
potential, the two lowest vibrational modes are the center
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of mass (c.m.) (all spins parallel, with @) and the breath-
ing (B) mode (half up, half down, with w, = VBw) [16].
We find that the pattern associated with the c.m. mode is
stable up to the flip of half of the spins, while the one
associated with the B mode is already unstable under a
single spin flip. Thus, only the spin configuration associ-
ated with the c.m. mode can be recovered (i.e., stored). To
increase the storage capacity of the network, we consider
here V(x) = plx|?, achievable using additional control by
dc electrodes ([4(b)], see also [17]). We calculate the ratio
w,/wy, as a function of vy, for Ca* ions. For N = 20, this
ratio depends neither on the number of ions, nor on the
value of p. For y = I, the ratio is = /3, and as in the
harmonic case, severe limitations on the storage capacity
appear [see Fig. 1(a)]. However, for 0.25 < y < 0.8, the
two lowest modes become nearly degenerate. The storage
capacity for a system of 40 Ca™ ions trapped in a potential
with y = 0.5 is displayed in Fig. 1(b), where the final
overlap is depicted as a function of the initial overlap for
the patterns associated with the two lowest vibrational
modes. my is close to 1 up to 8 spin flips, meaning that
the system is able to recover four patterns (the two asso-
ciated with the two lowest modes plus the two correspond-
ing to a global spin flip). The system sometimes reaches a
slightly deformed configuration, which differs only in 1
spin flip from the original one (spurious states), making m s
slightly smaller than 1. Specifically, the probability of
recovering the two modes is above 98%, up to 3 initial
random spin flips, and above 97% up to 8 (m; = 0.8).
Having shown that our system can be robust for classical
information storage, we explore now its capability for
distributed quantum computing in an error resistant way
(cf. [18]), i.e., robust with respect to the partial damage of
the system. To this aim, we consider a system of 8 spin-1/2
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FIG. 1. (a) Ratio between the frequencies of the second and
first vibrational modes as a function of the exponent of the
trapping potential for 20 Ca™ ions. (b) Final overlap averaged
over 500 initial configurations as a function of the initial overlap,
for the patterns associated with the two lowest vibrational modes
of 40 ions in a potential V = p|x|®® with p =6.6X
10720 J/m'/2. The black squares (triangles) correspond to the
first (second) pattern.

particles (as in [19]) in a trapping potential with y = 0.5.
The vibrational spectrum is, except for the lowest two
modes, highly nondegenerate, with rapidly increasing ei-
genvalues. Thus, we consider only the contributions of the
spin configurations associated with the three lowest mo-
tional modes which, up to a gauge transformation, corre-
spond to: all-up, half-up-half-down, 2-up-4-down-
2-up. We encode the information in the first two, and
consider the third one as noise. The phonon mode ampli-
tudes are approximated as M;,, = &' = *1 (exact for
periodic boundary conditions). Additionally, time depen-
dent ‘“magnetic’’ fields in the z (B;, B,) and x (A) direc-
tions are applied leading to the following expression for a
quantum neural network (QNN) Hamiltonian:

Honn (1) = —A[r (S5 + 85 + 85 + 85)2
+ ry(S3 + 85 — 85— 59)?
+r3(S] — 85 — 55 + 83
+ A(S] + 85 + S5+ S3) + Bi(S] + 853)
+ By(S5 + 7)) 5)

where S¢ =o0%, |+ 0%, i=1,...,4, and r; =r, >
r3 > 0. With A in energy units, all the other parameters
in Hqoyy are dimensionless. B, B,, and A are chosen
initially (¢ = t,) such that the ground |G(z,)), and the first
three excited states |E;(f)) correspond to: [{TT11111).,
UL 2, T ., and [LULITIT)..

To demonstrate universality we focus first on a single
qubit operation. Identifying |0) = |G(t)), |1) = |E, (1)),
we consider a single distributed-qubit operation, with a
generic qubit ay|G(zy)) + a,|E (y)), evolving adiabati-
cally under the changes of the magnetic fields, to a final
state ay|G(t = T)) + a4|E;(t = T)). We choose the time
dependence of the fields so that the final state is approxi-
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FIG. 2 (color online). Fidelities of the FH gate (left) and the
Bell gate (right), with respect to time (r, = 0.95r;). The classi-
cal fidelity bounds are 2/3 and 2/5, respectively (horizontal
dashed lines). The inset in gray shows the fields AA and B;A =
1073BA and B,A = 107°BAX with respect to time. For adiaba-
ticity, the chosen fields require T >> 7 X 10°7/A. The fidelities
are largely independent of the actual dynamics of the fields.
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mately the JH -rotated state of the input one, where H acts
on the logical states as |0) — |+), |1) — —|—), where
|=) = (]0) = |1))/+/2. This one-qubit gate { is reminis-
cent of the Hadamard gate that takes |0) — |+), [1) — |—).
The H operation is achieved by changing the positive
initial values of B; and B, adiabatically to zero, and
simultaneously increasing the zero initial A to a positive
value much larger than the initial B;, B, (inset Fig. 2).
Since we deal with superpositions of energy eigenstates,
we consider in the adiabatic transport the dynamical, as
well as the Berry phases [20]. The fidelity of the JH gate is
shown in Fig. 2 (left) as a function of time for different
noise ratio r3/r;. Note that artificially increasing the ratio
r3/r; imitates inaccuracies in the trapping potential, dis-
turbance in the motion of the ions, as well as noise in the
spin (as the phonons are the carriers of interaction between
the spins). The fidelity is quite insensitive to high noise
levels, and is larger than the classical (measure and pre-
pare) bound of 2/3.

Let us move now to the two-qubit gates, and treat the 4
left spins as one qubit, and 4 right ones as another, so that
|00) = [T, [01) = [TTTTU),, etc. (We have checked
that the JH gate fidelity is robust in this encoding also.) We
demonstrate here a way to implement an entangling uni-
versal gate [21] acting as [00) — (|00) + [11))//2, |11) —
(=100) + [11))/v2, |01y — (l01) + [10))/v/2, [10) —
(—101) + |10))/+/2. We denote this gate as Bell gate. We
now encode an arbitrary two-qubit state } ; ;1 4; /-Ii J), into
aplG(ty)) + ayi|E (1)) + agi|Ex (1)) + aiol E5(1y)). The
same variation of the magnetic fields as in the J{ gate
leads now to the Bell-gate rotated state [Fig. 2 (right)], with
fidelity that is noise insensitive and surpasses the classical
bound of 2/5. Note that in addition to being resistant
against noise induced by increasing r3/r, the fidelities
are also robust against spin-flip errors, as we have encoded
the qubit(s) in the two (four) lowest energy levels, for the
JH (Bell) gate, which we have already shown to be meta-
stable against spin flips. The time scales for which both H
and Bell-gate fidelities reach maximum values are long
enough to ensure robust implementation and also robust-
ness against errors in time of observation.

Summarizing, we have shown that spin-ion systems can
be used to implement NN models. We have calculated their
storage capacity and robustness against spin flips as well as
their dependence on the trapping potential. Identifying the
qubits with configurations of spins that echo the lowest vi-
brational modes of the system, we have shown that the sys-
tem can perform error resistant universal distributed QI
processing. We have demonstrated that by applying adia-
batically varying time dependent magnetic fields, the sys-
tem realizes single and two distributed-qubit operations in
a robust way [22]. The scalability issue is like other pro-
posals and experiments in ion-trap quantum computing
[23], and may potentially be overcome by connecting
mesoscopic clusters of trapped ions for instance, by “fly-
ing” qubits.
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