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Capacities of Quantum Channels for Massive Bosons and Fermions
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We consider the capacity of classical information transfer for noiseless quantum channels carrying a
finite average number of massive bosons and fermions. The maximum capacity is attained by transferring
the Fock states generated from the grand-canonical ensemble. Interestingly, the channel capacity for a
Bose gas indicates the onset of Bose-Einstein condensation, by changing its qualitative behavior at the
criticality, while for a channel carrying weakly attractive fermions, it exhibits the signatures of Bardeen-
Cooper-Schrieffer transition. We also show that, for noninteracting particles, fermions are better carriers
of information than bosons.
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A communication channel carrying classical informa-
tion by using quantum states as the carriers of information
has been a subject of intensive studies. The fundamental
result in this respect is the ‘‘Holevo bound’’ [1] (see also,
e.g., [2–4]), obtained more than 30 years ago, which gives
the capacity of such channels. An essential message carried
by the Holevo bound is that at most n bits (binary digits) of
classical information can be sent via a quantum system of n
distinguishable qubits (two-dimensional quantum sys-
tems). However, in realistic channels, where the quantum
system is usually of infinite dimensions, the Holevo bound
predicts infinite capacities. In realistic channels, it is there-
fore important to give a physical constraint on the carriers
of the information.

Information carried over long distances usually employs
electromagnetic signals as carriers of information. Capaci-
ties of such channels have been studied quite extensively
(see, e.g., [2,5,6]). In this case, the physical constraint that
is used to avoid the infinite capacity problem is an energy
constraint. Because of the form of the Holevo bound, the
ensemble that maximizes the capacity turns out to be the
canonical ensemble (or the microcanonical ensemble, de-
pending on the type of the energy constraint) of statistical
mechanics [5].

In recent experiments, it has been possible to produce
atomic waveguides in optical microstructures [7], or on an
atom chip [8], that may serve as quantum channels of
macroscopic (or at least mesoscopic) length scales.
Channels carrying massive particles have possibly fasci-
nating applications in quantum information processing. It
is thus important to obtain their capacities. Since we are
dealing now with massive information carriers, it is not
enough to put an energy constraint only. Rather, it is
natural to give a particle number constraint as well as an
energy constraint. This, of course, hints at the grand-
canonical ensemble (GCE) of statistical mechanics.
Indeed, in this Letter we show that the ensemble that
maximizes the capacity of noiseless channels that carry
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massive bosons or fermions, under particle number and
energy constraints, is the GCE. Note that massless photons,
despite being bosons, do not exhibit Bose-Einstein con-
densation (BEC), due to the lack of constraint on their
number. Massive bosons, however, do exhibit BEC; we
show in this Letter that the channel capacity of massive
bosons indicates the onset of BEC, by changing its behav-
ior from being concave with respect to temperature to
being convex. The bosons that we consider in this Letter
are noninteracting. Noninteracting fermions, however, do
not exhibit any phase transition. Interacting fermions, on
the other hand, exhibit the Bardeen-Cooper-Schrieffer
(BCS) transition, and as we show in this Letter, the ca-
pacity of interacting fermionic channels exhibits the onset
of such transition. We obtain our results by simulating a
finite number of particles in the channel and not the ther-
modynamical limit of an infinite number of particles. We
also show that for a wide range of power law potentials,
including the harmonic trap and the rectangular box, and
for moderate and high temperatures, the fermions are better
carriers of information than bosons, for the case of non-
interacting particles.

Suppose therefore that a sender (Alice) encodes the
classical message i (occurring with probability pi) in the
state %i, and sends it to a receiver (Bob). The channel is
noiseless, while %i can be mixed. To obtain information
about i, Bob performs a measurement M (on the ensemble
E � fpi; %ig) to obtain the postmeasurement ensemble
fpijm; %ijmg, with probability qm. The information gained
by this measurement can be quantified by the mutual
information IM�E� between the index i and the measure-
ment results m: IM�E� � H�fpig� �

P
mqmH�fpijmg�. Here

H�frig� � �
P
irilog2ri is the Shannon entropy of a proba-

bility distribution frig. The accessible information
Iacc�E� � maxMIM�E� is obtained by maximizing over all
possible M.

The Holevo bound gives a very useful upper bound on
the accessible information for an arbitrary ensemble:
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FIG. 1 (color online). The channel capacity, for the case of
noninteracting bosons, plotted against T=Tc. The lower curve is
for the case of 100 bosons, in a 3D box with PBC. For 87Rb
atoms in such a box of volume 1 �m3, thermodynamical calcu-
lations predict Tc � 0:4 �K. The upper curve is for 500 bosons
in the same trap. The thermodynamical estimations of Tc are
higher than the corresponding values that we obtain (as indicated
by the arrows).
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Iacc�E� � ��E� � S�%� �
P
ipiS�%i�. Here % �

P
ipi%i,

and S��� � �tr��log2�� is the von Neumann entropy of
�. In a noiseless environment, the capacity of such an
information transfer is the maximum, over all input en-
sembles satisfying a given physical constraint, of the ac-
cessible information. It is important to impose a physical
constraint on the input ensembles, as arbitrary encoding
and decoding schemes are included in the Holevo bound,
which has the consequence that the bound explodes for
infinite dimensional systems: For an ensemble of pure
states with average ensemble state % , � � S�% �, which
can be as large as log2d, where d is the dimension of the
Hilbert space to which the ensemble belongs. If the pure
states are orthogonal, Iacc � � � log2d, so that the ca-
pacity diverges along with its bound (see, e.g., [2]).

To avoid this infinite capacity, one usually uses an
energy constraint for channels that carry photons (see,
e.g., [2,5,6]). Suppose that the system is described by the
Hamiltonian H . Then the average energy constraint on a
communication channel that is sending the ensemble E �
fpi; %ig is tr�%H � � E. Here % is the average ensemble
state, and E is the average energy available to the system.
The capacity CE of such a channel is then the maximum of
Iacc�E�, over all ensembles, under the average energy con-
straint. Now Iacc�E� � ��E� � S�%�, and S�%� is maxi-
mized, under the same constraint, by the canonical
ensemble (CE) corresponding to the Hamiltonian H and
energy E (see, e.g., [9]). Moreover, this is an ensemble of
orthogonal pure states (the Fock, or in other words, number
states), so that CE is also reached for this ensemble [5]. The
channel capacity depends solely on the average ensemble
state, which in this optimal case is the canonical equilib-
rium (thermal) state %eq � exp���H �=Z, where � �
1=kBT, with kB being the Boltzmann constant and T the
absolute temperature. Z � tr�exp���H �� is the partition
function. For givenE, T is given byE � � @

@� �logeZ�. As a
result of particle number nonconservation, noninteracting
photons and hence their capacity do not exhibit signatures
of a condensation. However, effectively interacting photon
fluids and photon condensation effects are possible, in
principle, by using nonlinear cavities, in which case the
photons may acquire an effective mass (see, e.g., [10]).

In the case of channels that carry massive particles, it is
natural to impose the additional constraint of average
particle number. Suppose that Alice prepares N particles
in a trap, and transfers them to Bob. Let the trap have
energy levels "i, and let ni be the average occupation
number of the ith level. Then the conservation of the
average particle number reads

P
ini � N, and the con-

straint of a fixed average energy, for a given energy E, isP
ini"i � E. The channel capacity CE;N of such a channel

is the maximum of Iacc�E�, over all ensembles that satisfy
these two constraints. Under these constraints, the
von Neumann entropy of the average state of the system
is maximized by GCE. Again the ensemble elements are
pure and orthogonal (Fock states), whence the channel
capacity is reached by the same ensemble.
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It is important to stress here that the channel capacities
that we derive in this Letter are all for the case of a given
finite average number of particles in the trap, and not in the
thermodynamic limit. This is because in a real implemen-
tation of such channels this number is usually only at most
moderately high.

Noninteracting bosons.—Here, nbi � 1=�e��"i��
b� � 1�,

and the channel capacity (in bits) is given by (see, e.g.,
[11]) Cbe

E;N � �
P
i�n

b
i log2n

b
i � �1	 n

b
i �log2�1	 n

b
i ��.

Here �b is the chemical potential. For given average
particle number N and absolute temperature T, one uses
the energy constraint to find�b for that case. The energy is
then given by the average particle number constraint, and
the capacity by Cbe

E;N. Let us consider the case when the trap
is a 3D box of volume L3 with periodic boundary condition
(PBC), so that the energy levels are 2�2

@
2

mL2 �n2
x 	 n2

y 	 n2
z�,

nx; ny; nz � 0;
1; . . . . Here m is the mass of the individ-
ual particles in the trap.

In Fig. 1, we plot Cbe
E;N vs T=Tc, for different N. Here

Tc � �2�@2=mkB��N=2:612L3�2=3 is the critical tempera-
ture, as obtained in the thermodynamical (large N) limit.
The capacity changes its shape from being concave to
being convex with respect to temperature, at the onset of
BEC. The thermodynamical estimation of Tc is higher than
our values of Tc for different N, with the gap reducing for
growing N. Such an indication of a gap has also been
obtained previously (see, e.g., [12]). We have checked
that the predicted approximate gap in Ref. [12] is in
agreement with our calculations for N � 1000. For lower
N, however, the prediction is no longer valid, as expected
in Ref. [12]. Note that the capacity increases with increas-
ingN, and it has the same qualitative behavior for a 3D box
without PBC, as well as for a harmonic trap.

Fermions are better carriers of information than bo-
sons.—For spin-s noninteracting fermions, nfi � g=
�e��"i��

f� 	 1�, where g � 2s	 1, and �f is the fermion
3-2
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FIG. 2 (color online). We compare the channel capacity for the
case of 100 (noninteracting) spinless fermions (upper curve)
with that of 100 bosons (lower curve). The trap is a 3D box
with PBC. For the lower curve, the horizontal axis is T=Tc, while
for the upper curve, it is T=Tf, where Tf � �@

2=2mkB��
�3�2N=gL3�2=3 is the Fermi temperature.

PRL 95, 260503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
31 DECEMBER 2005
chemical potential. The channel capacity (in bits) is given

by (see, e.g., [11]) Cfd
E;N � �g

P
i�
nfi
g log2

nfi
g 	 �1�

nfi
g � �

log2�1�
nfi
g ��. Again, for given N and T, one obtains �f

from average particle number conservation, which then
gives the capacity.

The bosons that we have considered in this Letter are
spinless. To make a fair comparison of the capacities,
we consider ‘‘spinless,’’ i.e., polarized, fermions with
g � 1. Let us start with bosons and perform the high
temperature expansion. First, we expand the fugacity zb �
e��

b
in powers of N=S1, where Sk �

P
ie
�k�"i , and find

the coefficients from the average particle number con-
servation. We use this expansion to find an expansion of
the nbi ’s, which in turn is substituted in the formula for
Cbe
E;N. The same calculation is done for fermions. We per-

form the calculation up to the third order, and find that
Cbe
E;N � �

P3
i�1�

b
i �N=S1�

i�log2e	�
b
1�N=S1�log2�N=S1� 	

�b2�N=S1�
2log2�N=S1�, whereas Cfd

E;N � �
P
i�

f
i �N=S1�

i� �

log2e 	 �f1�N=S1� log2�N=S1� 	 �f2�N=S1�
2 log2�N=S1�.

The coefficients of first order perturbation are equal: �b1 �
�f1 � S1 	D1. In the next order, they differ by a sign:
�b2 � ��

f
2 � S2=2� S2D1=S1 	D2. The third order per-

turbation coefficients are again equal: �b3 � �f3 � �3S2 	
S3=3	 2S2

2=S1 	 �2S
2
2 � S1S3�D1=S

2
1 � 2S2D2=S1 	D3.

Also, �b1 � �f1 � �S1, �b2 � 0, �f2 � 2S2; here Dk �P
i�"ie

�k�"i .
To find out the potentials and dimensions for which this

perturbation technique is systematic, we consider uniform
power law potentials, such as V � r�, in a d-dimensional

Cartesian space of �x1; . . . ; xd�, with r �
����������������������������
x2

1 	 . . .	 x2
d

q
.

We calculate Sk and Dk, replacing sums by integrations
with density of states ��"� �

R
ddpddx	�p2=2m	 V �

"�, the latter integration being over the phase space. One
may then check that the technique is systematic when
1=�	 1=2> 1=d. This includes, e.g., the harmonic poten-
tial, the rectangular box, and the spherical box. For the
harmonic trap, we also performed the summations directly,
and obtained the same results. Note that 0 � �b2 <�f2 ,
whereas �b2�S2�1��h"i�	�h"i2�� (where h"i� stands
for the average energy with Boltzmann probabilities
e��"i=S1) can be explicitly evaluated by using the density
of states ��"�. As a result, we obtain �b2 � 0 � �f2 , imply-
ing that Cbe

E;N < Cfd
E;N for a large range of sufficiently high

temperature and for power law potentials that satisfy the
same condition as systematicity. We therefore have proved
the following theorem.

Theorem.—For power law potential traps (with power �
and dimension d), and for sufficiently high temperature, the
capacity of fermions is better than that of bosons when
1=�	 1=2> 1=d.

This includes, e.g., the harmonic trap in two and three
dimensions, the 3D rectangular box, and the 3D spherical
box. The theorem holds for quite moderate T, since we
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work up to the order �N=S1�
3. Numerical simulations show

indeed that it holds also for low temperatures, as seen, e.g.,
in Fig. 2 for 100 spinless fermions and same number of
spinless bosons trapped in a 3D box with PBC.

Note that we have found that the capacities for a 3D box
without PBC are lower than those with PBC, both for
bosons and fermions. The capacity for a harmonic trap,
with the same characteristic length scale, has a higher
capacity (both for bosons and fermions) than that for a
3D box with PBC. More importantly, the capacities for the
case of fermions do not show any signatures of criticality,
as expected.

Interacting fermions.—Until now, we have been dealing
with the case of noninteracting bosons and fermions.
Although a system of noninteracting massive bosons ex-
hibits condensation, this is not the case for noninteracting
fermions. A system of interacting fermions, however, can
exhibit Cooper pairing, and, consequently, a superfluid
BCS transition (see, e.g., [11]). It is therefore interesting
to see whether such a ‘‘condensation’’ can be observed in
the capacity of a channel transmitting trapped interacting
fermions. We consider here a 3D box (of volume L3) with
PBC, within which N fermions are trapped. The fermions
behave like an ideal Fermi-Dirac gas, except when pairs of
them with equal and opposite momentum, and opposite
spin components have kinetic energy within an interval �

on either side of the Fermi surface. In that case, the pairs
experience a weak attraction. The Hamiltonian can then be
written as H �

P
~kt ~k�a

y
~k;"
a ~k;" 	 a

y
~k;#
a ~k;#� 	

P
~k;~lV ~k;~la

y
~k;"
�

ay
� ~k;#

a
�~l;#a~l;", where t ~k � @

2k2=2m, whereas V~k;~l vanishes

except when j�� @
2k2=2mj � �
 and j�� @

2l2=2mj �
�
, in which case, V~k;~l � �V0 < 0. Using mean field
approximation, the average occupation number in this
case turns out to be N~k � �1� �
 ~k=E ~k� tanh��E~k=2��=2,

where 
 ~k � t ~k �� and E~k �
����������������������

2
~k
	 j� ~kj

2
q

. Here � ~k �

��T�, when j
 ~kj � �
, and vanishing otherwise. This is
the so-called ‘‘gap,’’ given by the equation �~l�

V0
P

~k�� ~k=E ~k� tanh��E~k=2�, where the summation runs
3-3



0.00 0.05 0.10
40

50

60

70

80

90

C

10
C

ap
ac

it
y 

(C
)

T/T
f

FIG. 3 (color online). Channel capacity of 100 interacting
fermions in a 3D box trap with PBC, against T=Tf. The capacity
is initially convex, and then becomes concave, for higher T’s, as
illustrated in the inset.
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only for an energy interval �
 about the Fermi surface.
Note that the occupation numbers in this case are different
from the case of ideal (noninteracting) fermions. Using the
gap equation and the constraint

P
~kN ~k � N on the total

number of fermions in the trap, we can find the channel
capacity by replacing nfi byN~k in Cfd

E;N. As we see in Fig. 3,
the channel capacity again changes its behavior qualita-
tively, indicating the onset of the superfluid BCS transition.
In Fig. 3, we plot the channel capacity against T=Tf, where
Tf is the Fermi temperature for the case of noninteracting
fermions. This is for convenience, as the thermodynamical
transition temperature (for interacting fermions) has an
exponentially decaying factor, which renders it inconven-
ient for our purposes. Also we chose �
 � @

2

mL2 and V0 �

10�6 @
2

mL2 in the figure.
In this Letter, we have used the GCE, which has ap-

peared due to the dual constraints of average energy and
average particle number. For a fixed number of particles,
and retaining the average energy constraint, we are led to
CE. In the thermodynamical limit, the average occupation
numbers are the same for CE and GCE. For finite N, exact
calculations for CE are difficult. However, different ap-
proximate methods (see, e.g., [13]) reveal that the average
occupation numbers of CE are more uniform as compared
to GCE, so that the former ensemble has larger capacity.
However, the difference is marginal.

The channels considered in this Letter are noiseless. A
simple, but physically important model of noise is the
Gaussian noise acting similarly on each mode, resulting
in an effective increase of temperature in the channel. So
for a given temperature, to accommodate the average
energy constraint, we must start with a lower temperature
than that in the noiseless case, leading to a decrease in
capacity. The lower capacity in this particular noisy case
can be read off from the figures of the noiseless one after
finding the temperature difference.

To conclude, we have considered the classical capacities
of noiseless quantum channels carrying a finite average
26050
number of massive bosons or fermions. We have shown
that the capacities are attained on the grand-canonical
ensemble of statistical mechanics. Capacity of a channel
carrying bosons indicates the onset of Bose-Einstein con-
densation, by changing its behavior from being concave to
convex with respect to the temperature, at the transition
point. Also the signature of the onset of Bardeen-Cooper-
Schrieffer transition can be observed for weakly interact-
ing fermions. We show analytically that, for noninteracting
particles, fermionic channels are better than the bosonic
ones, in a wide variety of cases.
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*Institució Catalana de Recerca i Estudis Avançats.
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