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Abstract

Entanglement is the main quantum property that makes quantum infor-
mation protocols more powerful than any classical counterpart. Moreover,
understanding entanglement allows a better comprehensionof physical phe-
nomena in the �elds of condensed matter, statistical physics, and quantum
optics among others.

The open questions on entanglement range from fundamental to practical
issues. How to characterize the entanglement of quantum systems? What
is entanglement useful for? What is the relation between entanglement and
other physical phenomena? These are some open questions we are faced with
nowadays.

This thesis contains several original results in this �eld. Some of the
addressed questions rely on the mathematical description of entanglement
while others on its description in some physical systems. More speci�cally,

(i) it will be shown a relation between two quanti�ers of entanglement,
the generalized robustnessand the geometric measure of entanglement;

(ii) the entanglement of superpositions will be generalized to the multi-
partite case and to several entanglement quanti�ers;

(iii) a recently proposed Bell inequality for continuous-variable (CV) sys-
tems will be used to extend, for the CV scenario, the Peres' conjecture that
bound entangled states admit a description in terms of hidden variables.

(iv) a proposal to probe the geometry of the set of separable states will
be made. This approach is able to �nd singularities in the border of this set,
and those are reected in the entanglement properties of condensed matter,
atomic, and photonic systems. An experiment involving entangled photons
coming from parametric down conversion will be described toillustrate the
theoretical results;

(v) the decay of entanglement of generalizedN -particle GHZ states inter-
acting with independent reservoirs will be investigated. Scaling laws for the
decay of entanglement and for its �nite-time extinction (sudden death) are
derived for di�erent types of reservoirs. The latter is found to increase with
the number of particles. However, entanglement becomes arbitrarily small,
and therefore useless as a resource, much before it completely disappears,
around a time which is inversely proportional to the number of particles.
The decay of multi-particle GHZ states will be shown to generate bound
entangled states;
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(vi) and �nally, the entanglement properties of particles in a non-interacting
Fermi gas are studied. Since there is no interaction among the particles, this
entanglement comes solely from the statistical propertiesof the particles. It
will be shown how the way we detect the particles changes their entanglement
properties. Additionally a realistic proposal to convert identical particle en-
tanglement of fermions in a quantum well into useful photonic entanglement
will be given.
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Chapter 1

Introduction

Quantum Mechanics was born as a framework to describe physical phe-
nomena at the atomic level. Amazingly successful, this theory was rapidly
applied to a lot of scenarios such as atomic emission, particle scattering, and
radiation-matter interaction [ER85, FLS65].

The �rst strong criticism to quantum theory came with the Einstein,
Podolsky and Rosen's (EPR) paper \Can quantum-mechanical description
of the physical reality be considered complete?" [EPR35]. These authors rec-
ognized that, although quantum theory could catch many physical e�ects,
it allowed weird predictions such as instantaneous actionsat distance. In
the essence of the EPR argument was the use of what is nowadayscalled
an entangled state. Motivated by EPR, Sch•odinger was the one who �rst
discussed the fact that some composite quantum systems can be better un-
derstood if we look at them as a whole, instead of addressing their parts
separately [Sch35].

Many years passed until J. Bell put all this discussion in more solid
grounds. Accepting the notion of local realism adopted by EPR, Bell devel-
oped his famous inequality involving statistics of measurements on composite
quantum systems [Bel87]. From that point on, the local realism debate could
go to the labs. Some time later the �rst experimental tests ofBell inequalities
started to appear [FC72, FT76, AGG81, ADG82] and con�rm the non-local
aspect of quantum mechanics. As unentangled states (also called separable
states) can never violate a Bell inequality, the experimental violation of Bell
inequalities can be seen as the �rst observation of entanglement [Ter00].

Up to the 90's the debate on separability was played mostly ina funda-
mental level, relying in the grounds of Quantum Mechanics. It was only with
the appearance of the �rst tasks on Quantum Communication and Quantum
Computation that the term \entanglement" got the status of \ the resource"
capable of providing us advantageous methods over classical information pro-

11



12 INTRODUCTION

cessing [NC00, BEZ00]. In 1991, it was described a Cryptographic protocol
entirely based on entanglement [Eke91]. However, at that time, the commu-
nity already knew that without entanglement the same goal could be reached
[BB84, BBD92]. Perhaps the turning point on the theory of entanglement
was the discovery of Quantum Teleportation [BBC+93] . At that moment it
became completely clear the role of entanglement in practical tasks.

From that point on entanglement theory took its own road, being rec-
ognized as a discipline itself inside Quantum Information.Among the main
goals of entanglement theory are the development of a mathematical frame-
work able to describe this issue, the search for applications of entanglement,
the study of the role it plays in natural physical phenomena,and, coming
back to fundamental problems, its importance in the foundations of Quan-
tum Mechanics. Nowadays the literature on entanglement is amazingly big.
The purpose of this thesis is not to give the reader a survey onthis topic,
but, instead, to contribute to the knowledge of this �eld. More appropri-
ate reviews on entanglement are found in Refs. [HHHH07, AFOV07, PV05,
Bru02, Ter02, PV98, Ver02, Eis01, EP03].

1.1 Motivation

As commented before the open questions in this �eld range from the
mathematical description to practical applications. Among all these facets
of entanglement I will try to give here a small avor of those which motivated
me more during my PhD.

Although the mathematical de�nition of entanglement is relatively sim-
ple, the task of deciding if a general state is entangled is incredibly di�cult
[Ter02, HHHH07]1. Developing techniques to attack this problem is one of
the major goals of entanglement theory. A step further of \just" knowing
whether a state is entangled is to know how much entangled it is. Following
this vein, entanglement quanti�ers are a set of rules one applies to a quan-
tum state in order to estimate its amount of entanglement [PV98]. Behind
the initial attempts to quantify entanglement was the idea of quantifying
how useful a quantum state is to perform some task [BBP+96, BDSW96].
This is a very promising way of de�ning entanglement quanti�ers, but it
certainly depends on the task one is dealing with. A more axiomatic road
is just to de�ne a set of properties an entanglement quanti�er must satisfy,
without wondering whether the quanti�er itself carries a physical meaning
[Vid00, VPRK97]. Finally, another approach frequently followed is to quan-

1In technical terms it is said that the problem of determining if a general state is
entangled is NP-hard [Gur03].
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tify entanglement using geometric ideas. We can organize quantum states
in mathematical sets, and de�ne distances on these sets. Theamount of
entanglement of a given state can be quanti�ed, in this way, by the distance
between this state and the set of unentangled states [VPRK97, VP98]. The
number of proposed entanglement quanti�ers is huge, and understanding the
properties of each quanti�er and the information they bringis an important
branch of entanglement theory. In this sense, getting relations among the
existing quanti�ers could help us to get a better understanding on how to
order quantum states in terms of their entanglement content.

With the development of entanglement theory it started to bepossible
to connect this issue to other �elds of physics. For instance, the study of
entanglement in realistic models has allowed us to get a deeper understanding
of several phenomena in condensed matter, atomic and photonic systems
[RMH01, LBMW03, KWN+07, AFOV07]. Practical questions concern which
kinds of interactions allow the production of entanglement, how it behaves
under speci�c unitary evolution and how is entanglement a�ected by the
presence of noisy environments.

Following the last point, it is essential to understand how entanglement
behaves in realistic situations where unavoidable errors in the preparation
of states and unwanted interactions during the post-processing are present.
Many studies linking entanglement and decoherence have appeared so far
[Dio03, DH04, YE04, YE06, YE07, SMDZ07, Ter07, AJ07], but some funda-
mental questions are still to be answered. One of them concerns the behavior
of multiparticle entanglement under decoherence processes [SK02, CMB04,
DB04, HDB05]. From a theoretical point of view, understanding this prob-
lem would give us a better understanding on the appearance ofclassicality
when increasing the system's size. From a practical point ofview, this issue is
crucial since the speed-up gained when using quantum-mechanical systems,
instead of classical ones, for information processing is specially relevant in
the limit of large systems.

Finally, most of the theory of entanglement was constructedin the sce-
nario of distinguishable particles. In this case one identi�es (labels) the
subsystems and then de�nes what is a local, or individual, operation. When
dealing with identical particles the idea of entanglement becomes much sub-
tler: in an identical particle scenario labeling the subsystems makes no sense
anymore and then talking about local operations is misleading. Another
problem concerning identical particles is that entanglement \comes for free"
in this case. Two fermions in the same location get spin entangled (in a
singlet state) just because they obey the fermionic statistics. It is then not
clear, and actually controversial, how to describe this kind of quantum cor-
relations, if they are useful for quantum information processing, or even if
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we should call them \entanglement" [ESBL04, GM04] .

1.2 Contributions

Let me briey comment on some of the ideas that I, together with col-
laborators, developed to get a better understanding of entanglement.

Geometric Measure vs. the Robustness of Entanglement.

As already commented, many are the entanglement quanti�ersproposed
up to now. Finding relations between them can help us to classify them, and
get a better understanding on the information they give us. Ihave found a
relation between two standard quanti�ers, the Geometric Measure (EGME )
and the Generalized Robustness of Entanglement (Rg). While the �rst has a
clear geometrical meaning as a distance between an entangled states and the
set of separable states, the latter was proposed as a measureof how much
noise a state can tolerate before it looses its entanglement.

It follows from their de�nition that Rg is always larger than or equal to
EGME . I will show a better lower bound toRg based only on the purity of
the quantum state and its maximal overlap to a separable state. As we will
see it is possible to express this lower bound in terms ofEGME . I will �nally
identify cases where this bound is tight.

Multipartite entanglement of superpositions.

Given two pure statesj	 i and j� i , how is the entanglement of the super-
position statea j	 i + bj� i related to the entanglement of the constituentsj	 i
and j� i ? This question was �rst addressed by Linden, Popescu and Smolin,
who gave upper bounds to the entanglement of the superposed state in terms
of the entanglement of the former states [LPS06].

M. Terra Cunha, A. Ac��n and I have considered a possible generalization
of the Linden, Popescu and Smolin's result to the multipartite scenario: an
upper bound to the multipartite entanglement of a superposition was given
in terms of the entanglement of the superposed states and thesuperposition
coe�cients. We have proven that this bound is tight for a class of states
composed by an arbitrary number of qubits. Our results also extend the en-
tanglement of superpositions to a large family of quanti�ers which includes
the negativity, the robustness of entanglement, and the best separable ap-
proximation measure.
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Bound entanglement and Bell violation in a continuous-vari able
scenario.

Guided by the similarities between the processes of entanglement distilla-
tion [BDSW96] and revealing hidden non-locality [Pop95, Per96a], A. Peres
conjectured that all undistillable states2 satisfy Bell inequalities. This con-
jecture has been con�rmed only in the scenario whereN individuals apply
just two measurement settings of binary outcomes.

Recently a new Bell inequality has appeared which can be applied to un-
bounded operators, i.e. it works in a continuous-variable scenario [CFRD07].
Using this new Bell inequality we will see that it is possibleto extend Peres
conjecture to the CV scenario, and prove that all states having a positive
partial transposition satisfy this inequality3. These results were found in
collaboration with A. Salles and A. Ac��n.

Shining light on the geometry of entanglement.

The set of quantum states is convex and closed: convex combinations of
quantum states are also quantum states. The set of separablestates forms
a subset, which is again convex and closed. Apart from these features that
follow directly from the de�nition of quantum and separablestates [BZ06],
subtler questions arise when considering these states. Howto characterize
the shape or the volume of these sets and to determine whetherthey have
any inuence on directly measurable quantities are some of these queries.

In collaboration with M. Terra Cunha, M. F. Santos, F. Brand~ao, P. Lima,
O. Cosme, S. P�adua, and C. Monken I proposed a method to investigate the
shape of the set of separable states through an entanglementquanti�er called
random robustness of entanglement. This quanti�er serves as a \microscope"
to probe the boundary of the set of separable states. Moreover this inves-
tigation can be done experimentally, what allows to get information on the
shape of the set of di�erent entangled states in real experiments. We imple-
mented this method in a photonic experiment and found singularities in the
shape of the separable states in the two-qubit case. As a consequence, sin-
gularities appear in the quantum correlations a system presents. I will also
show that this phenomenon appears naturally in physical processes like the
entanglement transfer problem, spin systems under varyingmagnetic �elds,
and decoherence processes.

2The concept of entanglement distillation will be discussedlater.
3All states having positive partial transposition are undistillable [HHH98], while the

opposite is not known.
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Mutipartite Entanglement vs. Decoherence.

In the real world we never have a pure quantum state. Due to unavoidable
errors in the preparation of states or noise in their postprocessing we always
deal with mixed states. Entanglement is very fragile to these noisy processes
and this is certainly the main obstacle to real applicationson Quantum
Communication and Computation. On the other hand, the phenomenon
of coherence loss, or decoherence, is in the core of the quantum-classical
transition [Zur03]. So, understanding how quantum systemsbehave under
the presence of noise is a fascinating challenge both from a practical and a
fundamental perspective.

With L. Aolita, R. Chaves, L. Davidovich, and A. Ac��n, I have addressed
this point and investigated the decay of entanglement of a representative
family of states, namely unbalanced GHZ states consisting of an arbitrary
number of particles. Di�erent types of reservoirs interacting independently
with each subsystem were considered and scaling laws for thedecay of en-
tanglement and for its �nite-time extinction were found. The latter increases
with the number of particles. However, entanglement becomes arbitrarily
small, and therefore useless as a resource, much before it completely dis-
appears, around a time which is inversely proportional to the number of
particles. It was also shown that the decay of multi-particle GHZ states can
generate bound entangled states.

Is identical-particle entanglement useful?

Suppose a gas of non-interacting fermions at zero temperature. If we
pick up two fermions from this gas, are them spin-entangled?I have studied
this question together with M. F. Santos, M. Terra Cunha, C. Lunkes, and
V. Vedral, and showed that its answer depends not only on the distance
between the particles but also on the way (the detector) we pick them. We
�rst considered an ideal measurement apparatus and de�ned operators that
detect the symmetry of the spatial and spin part of the density matrix as
a function of particle distance. Then, moving to realistic devices that can
only detect the position of the particle to within a certain spread, it was
surprisingly found that the entanglement between particles increases with
the broadening of detection.

In this context we also considered the problem of using this identical
particle entanglement. For this aim, L. Malard and F. Matinaga joined us
to report on a scheme to extract entanglement from semiconductor quan-
tum wells. Two independent photons excite non-interactingelectrons in the
semiconductor. As the electrons relax to the bottom of the conduction band,
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the Pauli exclusion principle forces the appearance of quantum correlations
between them. I will show that, after the electron-hole recombination, this
correlation is transferred to the emitted photons as entanglement in polariza-
tion, which can be further used for quantum information tasks. We can then
conclude that identical particle entanglement is indeed useful for quantum
information processing!

1.3 Overview

I will start this thesis by reviewing the existing ideas needed to the deriva-
tion of the thesis' results. They consist on basic concepts on entanglement
theory and are given here for the sake of completeness. In theremaining
chapters I will expose some of the original results I developed during my
PhD.

The next three chapters are more related to the mathematicalformalism
of entanglement theory: chapter 2 shows a connection between two entangle-
ment quanti�ers, chapter 3 discusses the problem of the entanglement of su-
perpositions, and chapter 4 focuses on the relation betweenentanglement and
violation of Bell inequalities. Chapter 5 deals with a mathematical problem
as well, the geometry of entanglement, but also aims at �nding consequences
of it in physical phenomena. A photonic experiment was implemented to
illustrate our achievements on this subject.

The following chapters are related to the characterizationof entanglement
in speci�c physical processes. Chapter 6 describes how the entanglement of
an important family of multiparticle system changes in the presence of noise.
Chapter 7 discusses the entanglement properties of degenerate Fermi gases
and how the way we observe this system inuences the entanglement we de-
tect. Moreover I consider an exemplary system, a semiconductor quantum
well, to show that the Pauli principle can be used to create useful entangle-
ment. Finally I will draw some conclusions in the last chapter and point out
future directions that could be followed towards a better understanding of
entanglement.





Chapter 2

Background

In this chapter I will briey review the concepts used in the development
of the ideas presented in the next chapters. The goal is not togive a broad
overview on each of the addressed topic. Thus, many important results on
entanglement will be skipped here. The purpose of this chapter is to provide
the reader a self-contained text and also of �nding some useful references.
Those who are already familiar with entanglement theory canskip this part
of the thesis. More complete reviews on entanglement can be found in Refs.
[HHHH07, AFOV07, PV05, Bru02, Ter02, PV98, Ver02, Eis01, EP03].

2.1 What is entanglement?

Quantum states are described by semi-de�nite positive operators of unity
trace acting on a Hilbert spaceH known as the state space. Thus, an oper-
ator � 2 B(H) (the Hilbert space of operators acting onH) representing a
quantum states satis�es:

1. � � 0;

2. Tr( � ) = 1 :

Such operators are called density matrices or density operators. Any density
operator can be written (non-uniquely) through convex combinations of one-
dimensional projectors, that is,

� =
X

i

pi j i i h i j ; (2.1)

such that X

i

pi = 1 and pi � 0: (2.2)
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A special case of representation (2.1) is whenpi = 1 for somei , so we can
describe a quantum state by a unidimensional projector,i.e.:

� = j i i h i j : (2.3)

In this case, � is called a pure state. Pure states are the extreme points of
the set of quantum states and then represent those systems from which we
have the most complete information.

System composed by many partsA; B; :::; and N are also represented by
density operators, but now acting on a vectorial spaceH with a tensorial
structure:

H = H A 
 H B 
 ::: 
 H N ; (2.4)

whereH A ; H B;..., and H N are the state spaces for each part.
The notion of entanglement appears in these composite spaces. Let me

�rst present the de�nition of entanglement and separability for bipartite sys-
tems, and then move on to the idea of multipartite entanglement.

De�nition 1 - Bipartite separability: Bipartite separable states are those
which can be written as a convex combination of tensor products of density
matrices, i.e.: � 2 B(H A 
 H B) is separable if

� =
X

i

pi � A
i 
 � B

i ; (2.5)

where f pi g is a probability distribution. Alternatively, states thatcannot be
written in this form are called entangled.

An example of an entangled state isj� + i = ( j00i + j11i ) =
p

2.
In the case of bipartite systems we need just to make a distinction between

separable and entangled states. When multiple parts are involved it may
happen that a state contains entanglement among some parts which, at the
same time, are separated from others. An example is the state

(j00i + j11i )
p

2



(j00i + j11i )
p

2
; (2.6)

which contains entanglement between the �rst two and between the last two
subsystems, but not between these two subgroups. In this context, di�erent
ways of entangling multiple parts emerge. We are then led to the notion of
k-separability [DCT99, DC00, ABLS01]:

De�nition 2 - k-separability: A quantum state is calledk-separable if it
can be written as a convex combination of states which are product of k tensor
factors (as a generalization of(2.5)).
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The state (E.6) is just an example of a 2-separable (or biseparable) states.
A more detailed description of multipartite entanglement is presented in Ap-
pendix A.

2.2 How to detect entanglement?

Given a general quantum state� , how to determine if it is entangled?
In principle one could think of checking whether� can be written as (2.5).
However, as� can be represented in in�nitely many convex combinations,
the task of �nding if one of these forms reads like (2.5) is amazingly di�cult
[Gur03, Ter02, HHHH07]. We must then �nd other methods to check sep-
arability. Following this reasoning severalentanglement criteria have been
developed in the last years [Ter02], but up to now there is no de�nitive test
for separability and it is unlikely to exist in general. In what follow I will
present some criteria that will be used along the text.

Bell Inequalitites

Suppose an experimental scenario where two physicists, usually called
Alice and Bob, in two space separated locations are given a particle each
produced by a common source. Alice and Bob choose some measurement
settings to perform on their particles. For instance, Alicechooses to per-
form measurements using two di�erent devices (settings),A1 and A2, each
one delivering a possible set of outcomes labeled bya1 and a2 respectively.
Equivalently Bob choosesB1 and B2, with possible outcomesb1 and b2. The
basic objects Alice and Bob might compute are their joint probabilities ob-
tained from the experiments. For example,

P(a2 = 1; b1 = � 1jA2; B1) (2.7)

is the probability of Alice getting outcome 1 when measuringher system with
apparatusA2 and Bob getting � 1 when measuringB2.

The main problem concerning non-locality consists in asking whether the
measured joint probabilities are compatible with local-realistic theories. In
other words, whether the measurement data can be explained under the as-
sumption that Alice's outcomes is completely independent of Bob's setup
(locality) and that the measured properties have preexisting values, inde-
pendent of their observation (realism) [WW01b, Gis07].

Bell has shown that some quantum states do not admit such local-realistic
interpretation (also called alocal-hidden-variable (LHV) model) [Bel87]. This
was done through the derivation of inequalities (Bell inequalities) involving
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the measured probabilities, which turn out to be satis�ed byjoint proba-
bilities admitting an LHV model. As the statistics obtained by measuring
separable states always admit an LHV model, the violation ofBell inequali-
ties also indicates entanglement [Ter00, WW01b].

The �rst conclusive experimental demonstrations of Bell violations started
to appear in the 80's [AGG81, ADG82], much before entanglement was rec-
ognized as an important resource1. Nowadays, Bell type experiments have
become a routine, and are performed sometimes just as an experimental cal-
ibration. It must be stressed that some entangled states do not violate Bell
inequalities [Wer89, TA06, APB+07].

Schmidt decomposition.

Any bipartite pure state j i 2 H A 
 H B can be written as

j i =
mX

i

� i ji i A ji i B ; (2.8)

wherem = min[dim( H A ); dim(H B)], fj i i A g (fj i i B g) is an orthonormal basis
for H A (H B), and � i > 0 [Sch07, EK95, NC00]. The decomposition (2.8)
is called the Schmidt decomposition, and the coe�cients � i are called the
Schmidt coe�cients of j i .

If j i has only one non zero Schmidt coe�cient, it is clearly separable,
and if it has more than one Schmidt coe�cient it is entangled. In this way
the Schmidt decomposition completely characterizes separability for bipartite
pure states.

Peres-Horodecki criterion.

Although the Schmidt decomposition is a very powerful and useful en-
tanglement criterion, it can be applied only to pure states.The �rst entan-
glement criterion for mixed states was proposed by A. Peres and uses the
notion of partial transposition [Per96b].

Writing a bipartite state � AB in a product basisfj ij ig , i.e.:

� AB =
X

ij;kl

� ij;kl jij i hkl j ; (2.9)

1All the experimental violations of Bell inequalities up to now su�ered from some
loop-hole problem [Gis07]. Hence, although all of them indicate the non-local nature of
quantum mechanics no de�nitive proof has appeared so far.
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where � ij;kl are the matrix elements of� AB in this basis, the partial traspo-
sition of � AB is de�ned as:

� TB
AB =

X

ij;kl

� ij;kl jil i hkj j : (2.10)

It is possible to see that if� AB is separable� TB
AB is a positive operator. We

can then state: If � TB
AB has a negative eigenvalue,� AB is entangled(Peres

criterion).
Although Peres conjectured that his criterion was able to detect any bi-

partite entangled state this was proven to be the case only for systems of di-
mensions smaller than 6. For higher dimensions there exist entangled states
with positive partial transposition [Hor97, HHH96, HHH98].

Entanglement Witnesses.

It follows directly from de�nition 2 that k-separable states form a convex
set, Sk : convex combinations ofk-separable states are alsok-separable. The
task of determining if a quantum state� is k-separable can be reinterpreted
as determining if � is inside the convex setSk . It follows from the Hanh-
Banach theorem that any point outside a convex set, can be separated from
this set by a hyperplane (see �g. 4.14) [BV04]. This geometrical fact can
be used in the separability problem by stating thatfor any entangled state�
there exists some Hermitian operatorW k such that

(i ) Tr( W k � ) < 0;

and
(ii ) Tr( W k � ) � 0 8 � 2 Sk

[HHH96]. We callW k a k-entanglement witnessfor the state � .
Entanglement witnesses are the theoretical solution for separability. How-

ever, given a general state it is not easy to �nd a witness detecting it. Numer-
ical methods to �nd witnesses have been proposed [BV04a, BV04b, DPS04],
but they are usually ine�cient for high dimensional systems.

Entanglement witnesses were also shown to be able to quantify [Bra05]
or at least to estimate the amount of entanglement a state has(see next
Section) [CT06, EBA07, GRW07]. Finally, asW k is a Hermitian operator it
can, in principle, be measured, and then entanglement can beexperimentally
veri�ed (seee.g.: Refs. [BEK+04, BMN+03, AJK+05, HHR+05, KST+07]).
Moreover, Bell inequalities can be seen as examples of entanglement witnesses
[Ter02, HGBL05].
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Figure 2.1: Geometric representation of k-entanglement witnesses.

2.3 How to quantify entanglement?

With the advent of Quantum Information Theory entanglementstarted
to be seen as a resource. Then it became fundamental to know how much of
this resource is available in each state. Let me start with anexample. The
state j� + i = ( j00i + j11i )=

p
2 can be used to perform perfect teleportation

of a one-qubit state [BBC+93]. As a convention we can say thatj� + i has 1
ebit of entanglement, and de�ne it as the basic unity of this resource. What
happens if we use another quantum state for teleportation?

Several measures of entanglement have been proposed so far [PV05]. Dif-
ferent approaches to get entanglement quanti�ers were considered, most of
them based on the following ideas:

1. Convertibility of states: The state j i is said to be more entangled
than j� i if we can transform j i into j� i deterministically using just
local operations and classical communication (LOCC). Thisway of or-
dering states comes naturally from the fact that entanglement cannot
be created by LOCC, since it is a purely non-local resource. One of
the problems with this approach is that very little is known about
conversion of mixed states [Jan02, LMD08]. Furthermore, even in the
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pure-state case, some states are not convertible [JP99].

2. Usefulness: A state j i is more entangled thanj� i if it supersedes
j� i in realizing some task. As one can see, this way of quantifying
entanglement is highly dependent on the considered task. Hence given
two states the �rst can be better than the second for some task, but
worse for others.

3. Geometric approach:The amount of entanglement of a quantum state
is given by the distance between this state and the set of separable
states. Again, this approach does not depend only on the states them-
selves, but also on the chosen distance measure.

Examples of quanti�ers following theses ideas can be found in Refs.
[PV05, HHHH07]. In what follows I am going to present the quanti�ers
I will use along this thesis.

Distillable entanglement

Keeping in mind that j� + i is in general the optimal state to perform
quantum information tasks, one can think on the following problem. Suppose
two separated observers, Alice and Bob, would like to perform one of these
tasks but do not sharej� + i states. Instead, they are supplied with as many
mixed states� AB as they want2. Can they use their states� AB to establish
j� + i states between them by LOCC? What is the cost of this transformation?

The distillable entanglementanswers these questions and determines how
many j� + i pairs can be extracted (or distilled) out ofn pairs of the state� AB

using LOCC, in the limit of n ! 1 . In mathematical words the distillable
entanglement of� AB is given by

ED (� AB ) = sup
� LOCC

lim
n!1

m
n

; (2.11)

wherem is the number ofj� + i pairs that can be extracted by applying LOCC
strategies � LOCC on � 
 n

AB .
The main di�culty of the distillable entanglement is the opt imization

over all possible LOCC protocols it contains. This makes this quanti�er
extremely hard to compute in general.

Another curious feature of distillation is the fact that notevery entangled
state is distillable [HHH98]. For some states there is no LOCC protocol

2This scenario is the typical one in real tasks, where errors typically decrease the purity
of the state one deals with.
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able to get maximally entangled states out of them, even if many copies are
available3. These undistillable states are called bound entangled states.

Negativity

In the previous section we saw that if a state� AB has a negative partial
transposition, it is entangled. Thenegativity (N (� AB )) makes use of this fact
and quanti�es entanglement as the sum of the absolute valuesof the negative
eigenvalues of� TB [LK00, VW02], i.e.:

N (� AB ) =
X

� i < 0

j� i j; (2.12)

being � i the eigenvalues of� TB
AB .

The main advantage ofN (� AB ) is that it is an operational quanti�er
and can be easily calculated for any bipartite state. However, as already
commented, the Peres criterion is not able to detect all entangled states.
Consequently the negativity of someentangledstates is null. It was interest-
ingly shown that those entangled states with null negativity are undistillable
[HHH98].

Robustness of Entanglement

The robustness of entanglementof a k-partite state � is a natural quanti-
�er of how much noise� admits before it becomesk-separable [HN03, VT99].
Suppose we would like to have ak-partite state � but due to errors we end
up having the noisy state � + s�

1+ s , where � is another quantum state ands is
a positive number. How much noise� the state � tolerates before getting
k-separable? Therelative robustness(Rk(� jj � )) aims at quantifying that,
and is mathematically de�ned as

Rk(� jj � ) = min s such that � =
� + s�
1 + s

is k-separable. (2.13)

It might happen that for some particular choices of� , � is neverk-separable.
In this thesis I will be more concerned with two related quantities. The �rst
is called the random robustness(Rk

R ) and represents the robustness of the
state � with respect to the most mixed stateI=D , where I is the D � D
identity matrix, i.e.:

Rk
R (� ) = min s such that � =

� + sI=D
1 + s

is k-separable. (2.14)

3In the special case of 2 qubits all states are distillable [HHH97].
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Figure 2.2: Geometrical interpretation of Rk
R - The straight line repre-

sents the convex combination� + sI=D
1+ s . Rk

R (� ) is given by the value ofs such
that this combination becomesk-separable.

As the state I=D is always interior to the set ofn-separable states (i.e.: the
fully separable states)[ZHSL98], the minimization in (2.14) is well de�ned.

Another useful quantity is the generalized robustness of entanglement
(Rk

g(� )) which is the minimization of the relative robustness overall pos-
sible states� [Ste03],i.e.:

Rk
g(� ) = min

�
Rk(� jj � ): (2.15)

Apart from the direct operational meaning in terms of resistance to noise,
the robustness of entanglement have other interesting features. First it can
quantify any kind of multipartite entanglement. Furthermore the robustness
also has a clear geometric interpretation. The state� can be seen as a
convex combination of the state� and the noisy state� . The robustness
of entanglement gives the point where this convex combination crosses the
border of the set ofk-separable states (see Fig. 2.3).

Geometric Measure of Entanglement

The geometric measure of entanglementE k
GME ( ) quanti�es entangle-

ment through the minimum angle between a statej i and a k-separable
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Figure 2.3: Geometrical interpretation of Rk
g - The straight line rep-

resents the convex combination� + s�
1+ s . We see that for a given state� and

a value ofs this combination becomesk-separable. Rk
g(� ) is de�ned as the

minimum s, considering all possible states� .

state j� i [BL01, WG03], i.e.:

E k
GME ( ) = 1 � � 2

k( ); (2.16)

where
� 2

k( ) = max
� 2 Sk

j h� j  i j 2: (2.17)

Thus E k
GME is also able to quantify multipartite entanglement.

For mixed states,E k
GME uses the so-called convex-roof construction:

E k
GME (� ) = min

f pi ;j i ig

X

i

pi E k
GME ( i ); (2.18)

where f pi ; j i ig are possible ensemble realizations of� .

Witnessed Entanglement

The witnessed entanglement(E k
W (� )) uses the notion ofk-entanglement

witnesses to quantify entanglement [Bra05]. We have seen that, given a k-
entanglement witnessW k , Tr( W k � ) < 0 is an indicator of entanglement in
the state � . E k

W uses the value of this trace as a quanti�er:

E k
W (� ) = max f 0; � min

W k 2M
Tr( W k � )g; (2.19)
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where M is a restricted set ofk-entanglement witnesses which guarantees
that the above minimization is well de�ned.

Again this entanglement quanti�er can deal with di�erent kinds of mul-
tipartite entanglement since we can choose the setM as being the set of
witnesses with respect tok-separable states. Moreover, as entanglement
witnesses are linked to experimental observables, in principle, E k

W can be
experimentally determined, or at least estimated [CT06, EBA07]. The main
problem in the de�nition of E k

W is the minimization process it involves.
Finally, several entanglement quanti�ers can be written as(2.19) by ad-

justing the set M [Bra05]. Among these quanti�ers are the concurrence
[Woo98], the negativity [VW02], the robustness of entanglement [VT99,
HN03, Ste03], and the best separable approximation [LS98, KL01]. For in-
stance, the generalized robustness of entanglement corresponds to the choice
M = f W k j W k � I g and for the random robustnessM = f W k j Tr( W k) =
Dg.





Chapter 3

Connecting the Geometric
Measure and the Generalized
Robustness of Entanglement

The purpose of this chapter is to point out a connection between two well
discussed entanglement quanti�ers, the generalized robustness (Rk

g) [Ste03]
and the geometric measure of entanglement (E k

GME ) [BL01, WG03]. The
relation between these quanti�ers is not straightforward,since they rely on
distinct interpretations (see Chapter 1).

3.1 Relating Rg and EGME to entanglement
witnesses.

As we will see, the connection of these two quanti�ers will bemade
through the fact that both can be related to the notion ofk-entanglement
witnesses. This relation is shown in what follows.

One can always construct ak-entanglement witnessesW k , for a pure state
j i with k-entanglement, of the type [WG03]

W k = � 2 � j  i h j ; (3.1)

� 2 R. As this operator must have a positive mean value for everyk-separable
state, the relation

1 � � 2 � max
j � i2 Sk

k h� j  i k 2 � � 2
k (3.2)

must hold. The optimal witness of the form (3.1),W k
opt, is the one for which
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� = � 2
k . Thus we can write

W k
opt = � 2

k � j  i h j : (3.3)

In a di�erent fashion, we have seen that the robustness of entanglement
of a state� quanti�es how robust the entanglement of� is under the presence
of noise. As well as the geometric measure,Rk

g is intimately connected to the
notion of entanglement witnesses, and can be expressed as (2.19) by choosing
M as the set ofk-entanglement witness satisfyingW k � I [Bra05].

3.2 EGME as a lower bound for Rg

As the witness (3.3) satis�es the conditionW k � I we can attest the
following: for pure statesj i ,

Rk
g( ) � E k

GME ( ): (3.4)

Some points concerning the inequality (3.4) must be stressed. First, it is
a relation valid for all kinds of multipartite entanglement. Moreover this
relation is strict whenever the witness (3.3) is a solution of the minimization
problem in (2.19). Finally, one could argue that the relation (3.4) may be, in
fact, a consequence of standard results from matrix analysis relating di�erent
distance measures between operators (as commented, bothRk

g and E k
GME

are related to such distances). It must be clear thatRk
g( ) is not simply the

distance between and its closest state� 2 Sk . One should keep in mind
that this function also depends on the reference state� 1 (recall Figure 2.3).
This makes the closestk-separable state usually di�erent forRk

g and E k
GME .

In fact, it is possible to give a tighter relation betweenRk
g and E k

GME . I
am going to need the following result for this aim:

Lemma 1 For every state� ,

Rk
g(� ) �

Tr( � 2)
max� 2 Sk Tr( �� )

� 1: (3.5)

Proof. Suppose ak-entanglement witness of the formW = �I � � . The fact
that Tr( W � ) � 0 8 � 2 Sk implies that

Tr[( �I � � )� ] = � � Tr( �� ) � 0: (3.6)

It is now easy to see that max� 2 Sk Tr( �� ) is equal to the minimum value of
� (� min ),i.e.: � min = max � 2 Sk Tr( �� ).

1Besides that there is a minimization among all possible states � .
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Note that

W 0 =
W

� min
= I �

�
� min

< I: (3.7)

So we can writeRk
g(� ) � � Tr( W 0� ), from which follows the required result.

�
The lower bound onRk

g expressed by (3.5) can be easily interpreted: Tr� 2

measures the purity of� , and Tr(�� ) is the Hilbert-Schmidt scalar product
between � and � . It is expected that the more mixed� is, the lower the
value of Tr� 2, and the state becomes less entangled. Similarly, the larger
max� 2 Sk Tr( �� ), the closer to the setSk � gets, and the system will show less
entanglement.

Note that in the special case of pure states the relations Tr(� 2) = 1 and
max� 2 Sk (H ) Tr( �� ) = � 2

k(� ) hold and therefore we have the general relation

Rk
g( ) �

1
� 2

k( )
� 1: (3.8)

We can �nally arrive at the relation we were looking for:

Rk
g( ) �

E k
GME

1 � E k
GME

: (3.9)

It is interesting that two entanglement quanti�ers with di� erent geometric
interpretations are actually related. Moreover relation (3.5) allows an ana-
lytic lower bound to the generalized robustness for all states whenever �2k(� )
can be analytically computed. This is the case, for example,of completely
symmetric states, Werner states, and isotropic states [WG03, WEGM04]. 2

3.3 Examples

For bipartite pure states all the quantities considered so far can be ana-
lytically computed. In this case, the generalized robustness is given by

Rk
g( ) = (

X

i

� i )2 � 1; (3.10)

being f � i g the spectrum of Schmidt ofj i [Ste03]. In this context it can be
noted that � k is given by the modulus of the highest Schmidt coe�cient of

2We can furthermore see from (3.8) that log2(1+ Rk
g) � � 2 log2 � k : The left-hand side of

this expression is the logarithmic robustness of entanglement (LR k
g ), another entanglement

quanti�er with interesting features [Bra05]. Curiously, t his is exactly the same lower bound
expressed to the relative entropy of entanglement in Ref. [WEGM04].
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Figure 3.1: Generalized Robustness of Entanglement (black) and its lower
bound given in Eq. (3.9) (grey) for the state (3.11).

j i [WG03]. To visualize and compare these entanglement measures I have
calculated the generalized robustness, and the lower boundexpressed in (3.9)
for the state

j (p)i =
p

pj00i +
p

1 � p j11i : (3.11)

The plots are available in �gure 3.1.
As the presented relations betweenRk

g and E k
GME are also valid for mul-

tipartite entanglement it is useful to illustrate the results in this context.
Consider for instance the completely symmetric states de�ned as:

jS(n; k)i =

r
k!(n � k)!

n!
S

�
�
�
�
�
�
000::0| {z }

k

11::1| {z }
n� k

+

; (3.12)

where S is the total symmetrization operator. Wei and Goldbart showed
an analytical expression toE n

GME (jS(n; k)i ) ( i.e.: the geometric measure of
jS(n; k)i with relation to the completely separable states) [WG03]. Addition-
ally, in this case it was shown that the bound (3.9) is saturated [HMM+08].
It allows us to compute analytically the generalized robustness for the states
(3.12) and compare it with the geometric measure. As an illustration, some
examples are shown in Table 3.1.
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jS(2; 1)i jS(3; 2)i jS(4; 3)i jS(4; 2)i
E n

GME 0.5 0.55 0.58 0.625
Rn

g 1 1.25 1.36 1.65

Table 3.1: A comparison among multipartite entanglement ofsome states
(3.12), given by geometric measure of entanglement (E n

GME ) - see Ref.
[WG03] - and the robustness of entanglement (Rn

g ) - see Ref. [HMM+08].

3.4 Concluding remarks

In brief, I have shown some relations between the geometric measure of
entanglement and the generalized robustness of entanglement. A lower bound
to Rk

g with a natural interpretation was derived in terms ofE k
GME . Examples

were given to illustrate the results.
Since many entanglement quanti�ers exist it is important tounderstand

their relation and this, I believe, should be a major goal in the theory of
entanglement.





Chapter 4

Multipartite entanglement of
superpositions

Given the pure statesj	 i and j� i on a bipartite system, how is the
entanglement of the superposition state

j� i = a j	 i + bj� i ; (4.1)

related to the entanglement of the constituentsj	 i and j� i and to the coe�-
cients a and b? In a recent work [LPS06], Linden, Popescu and Smolin have
raised this question which was shown to exhibit a rich answerin terms of
nontrivial inequalities relating these quantities. In order to quantify the en-
tanglement, these authors used thedistillable entanglement1. However other
entanglement quanti�ers can also be used and, in fact, distinct bounds for
the entanglement of a superposition can be found depending on this choice
[YYS07, OF07].

In this Chapter I will discuss the route A. Ac��n, M. Terra Cunha and I
took to generalize the ideas raised in [LPS06] to the multipartite scenario.

4.1 Dealing with the witnessed entanglement

I will deal with the previously discussed family of quanti�ers expressed
by the witnessed entanglement(see (2.19)) [Bra05]. For an entangled pure

1In the case of bipartite pure states the distillable entanglement can be analytically
calculated by means of the Von Neuman entropy of the reduced state [BBP+96].
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state � = j i h j, the witnessed entanglement can be expressed as2

E k
W ( ) = � h  j W k

 opt
j i ; (4.2)

being W k
 opt

an optimal witness for the statej i (i.e.: a witness satisfying
the minimization problem in (2.19)). This simpli�ed way of writing E k

W will
be particularly useful in our constructions. Let me recall that several entan-
glement quanti�ers can be expressed asE k

W , and then the present results will
be valid for all those quanti�ers.

The main scope of this work is to obtain an upper bound to the witnessed
entanglement of the state (4.1) based on the entanglement ofthe superposed
states j	 i and j� i and the coe�cients appearing in the superposition. In
what follows, I will �rst derive an inequality relating these quantities and
then prove its tightness. The witnessed entanglement ofj� i can be written
as

E k
W (�) = max f 0; � min

W k 2M
h� j W k j� ig

= maxf 0; � min
W k 2M

[jaj2 h	 j W k j	 i + jbj2 h� j W k j� i

+ 2Re
�
a� bh	 j W k j� i

�
]g; (4.3)

an expression that resembles the usual interference pattern originated by
superpositions. For �nite dimension the minimization problem is solved using
the so-called optimal entanglement witnessWopt (inside the set M which
de�nes the quanti�er). So we can write

E k
W (�) = max f 0; �j aj2 h	 j W k

� opt
j	 i � j bj2 h� j W k

� opt
j� i

� 2Re
�

a� bh	 j W k
� opt

j� i
�

g: (4.4)

Again, W k
� opt

denotes a witness that is optimal for the statej� i . Di�erent
states usually have di�erent optimal entanglement witnesses. We are natu-
rally led to the inequality

E k
W (�) � maxf 0; �j aj2 h	 j W k

	 opt
j	 ig + maxf 0; �j bj2 h� j W k

� opt
j� ig

+ maxf 0; � 2Re
�

a� bh	 j W k
� opt

j� i
�

g

= jaj2E k
W (	) + jbj2E k

W (�) + 2 max f 0; � Re
�

a� bh	 j W k
� opt

j� i
�

g;

(4.5)

2I supposej i to have the kind of entanglement whichW k
 opt

is constructed to witness.
Remember that in the multipartite case a state can show di�erent kinds of entanglement,
and possibly the setM is tailored to witness one kind of entanglement, whilej i can show
only other kinds of entanglement.
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where I have also made use of the inequality maxf 0; a + bg � maxf 0; ag +
maxf 0; bg. Attention must now be payed to the interference term. The
Cauchy-Schwarz inequality implies

E k
W (�) � j aj2E k

W (	) + jbj2E k
W (�) + 2 jajjbj



 W k

� opt



 : (4.6)

Note that the normalization of the involved kets was used andI take the
norm of an operator as its maximal singular value. Expression (4.6) relates
the entanglement ofj� i to the entanglement of each one of the superposed
states (and the coe�cients of the superposition) but also depends on the
form of the optimal entanglement witnessW �

opt. This dependence on the
optimal entanglement witness is expected as the restrictions in W �

opt imply
the features of the entanglement quanti�er we are dealing with.

At this point it is worth asking if inequality (4.6) can be saturated. Con-
sidering the negativity as a quanti�er we can computeW �

opt analytically. For
a given state� , it is given by the partial transposition of the projector onto
the subspace of negative eigenvalues of� TA , where � TA denotes the partial
transposition of � [LKCH00]. It is now easy to see that for the two-qubit
states j� i = j00i and j	 i = j11i , the inequality (4.6) becomes an equality.

In the previous examples I used the fact that the optimal witnessW k
� opt

is known. Let me now remove this strong assumption. It was shown in Ref.
[Bra05] that the choice ofM (in Eq. (2.19)) being the set ofk-entanglement
witnesses satisfying� nI � W k � mI , wherem; n � 0, de�nes proper entan-
glement quanti�ers. Setting  = max( m; n) we have

E k
W (�) � j aj2E k

W (	) + jbj2E k
W (�) + 2  jajjbj: (4.7)

4.2 Are these relations tight?

As the main goal here is to work in the multipartite case it would be
interesting to �nd examples of multipartite states for which relation (4.7) is
saturated. The main barrier to be overcome in this case is thefact that it
is not known, in general, how to compute multipartite entanglement quanti-
�ers. Nevertheless I will show a way of calculating the generalized robustness
of entanglement for GHZ-like states and use this information to prove the
tightness of inequality (4.7) regardless the number of particles involved.

As discussed in chapter 2, the generalized robustness of entanglement
admits two representations. The �rst, given in eq. (2.15), establishes how
much noise we can mix to a state before it gets separable. The second
expressRk

g as a witnessed entanglementE k
W (� ) when M is the set of witness
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operators satisfyingW k � I . I will make use of both de�nitions to show that
for the N -qubit family of states

jGHZ N (� )i =

�
�
�0
 N

E
+ ei�

�
�
�1
 N

E

p
2

; (4.8)

the inequality (4.7) is saturated. Clearly if one chooses anarbitrary state �
such that the state � (�; �; s ) is separable for some value ofs, this number s
gives an upper bound for the value ofRk

g(� ). On the other hand, taking an
arbitrary k-entanglement witnessW k for the state � satisfying the condition
W k < I , � Tr( W k � ) gives a lower bound toRk

g(� ) according to (2.19). I will
now establish lower and upper bounds forRk

g(GHZ N (� )) that turn out to be
equal, getting the exact value of this quantity and also the value of  needed
for the bound (4.7).
Upper bound.Consider, in the de�nition of Rk

g given by Eq. (2.15),

� = jGHZ N (� )i hGHZ N (� )j (4.9)

and
� = jGHZ N (� )? i hGHZ N (� )? j ; (4.10)

where

jGHZ N (� )? i =

�
�
�0
 N

E
� ei�

�
�
�1
 N

E

p
2

: (4.11)

Using the Peres criterion [Per96b, HHH96] we see that

� =
� + s�
1 + s

(4.12)

has positive partial transposition(according to any bipartition) only for s = 1.
Moreover, for this point it can be directly veri�ed that � is alsoN -separable.
So we get

RN
g (GHZ N (� )) � 1: (4.13)

Lower bound. The following operator is a genuineN -entanglement witness
for the state jGHZ N (� )i [WG03, CT06]:

W N = I � 2 jGHZ N (� )i hGHZ N (� )j ; (4.14)

which clearly satis�es the conditionW N < I . Hence, de�nition (2.19) leads
to

� Tr( W N jGHZ N (� )i hGHZ N (� )j) = 1 � Rg(GHZ N (� )) : (4.15)
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As the upper bound (4.13) and lower bound (4.15) coincide we have that
RN

g (GHZ N (� )) = 1, and can also conclude that the witness (4.14) satis�es
the minimization problem in (2.19). It then allows us to extract the value
 = 1.

Putting all these facts together we conclude that the inequality (4.7)
saturates for the class of states (4.8).

4.3 Concluding remarks

I have shown that the notion ofentanglement of superpositionscan be
extended to the multipartite scenario. An inequality relating the entangle-
ment of two quantum states to the entanglement of the state constructed
through their superposition was found. This inequality wasproven to be
tight for a family of N -qubit states and a choice of entanglement quanti�er.
Moreover a large class of entanglement quanti�ers, with both operational and
geometrical meanings, was put in this context.

It is also worth noting that the inequalities derived here can be extended
to the case where more than two states are superposed [XXH]. Future re-
search could include the study of other examples of states and quanti�ers.





Chapter 5

Non-locality and partial
transposition for continuous
variable systems

Since the early stages of Quantum Mechanics the question whether na-
ture is non-local is the subject of much debate. After J. Bell's derivation
of experimentally testable conditions [Bel87] - known as Bell inequalities -
a huge amount of experimental tests of non-locality were developed, but no
one could de�nitively answer this question so far. All of theperformed ex-
periments su�ered from loop-holes problem coming usually from low-e�cient
detection or non space-like separated measurements [Gis07]. An alternative
for these problems is to use quadrature measurements of the electromagnetic
�eld since photons can be easily distributed among distant locations and can
be e�ciently measured by homodyning techniques [GFC+04, GFC05].

There has been little work done so far on Bell inequalities for continuous
variable (CV) systems1, and most of the proposals used some kind of measure-
ment discretization (also termedbinning). Only recently a Bell inequality
dealing with unbounded operators came up. Cavalcanti, Foster, Reid and
Drummond (CFRD) introduced a multipartite Bell inequality where each
part measures two �eld quadratures [CFRD07]. Unfortunately the only vi-
olation the authors could �nd consists on using a ten-mode system, which
makes this test extremely di�cult from an experimental point of view.

During most of the history of quantum mechanics, the concepts of entan-

1There exist several works studying the violation of \standard" Bell inequalities, that
is, with a �nite number of outcomes, in CV systems (e.g.: [BW99, Mun99, WHG+03,
WHG+03, GFC+04, GFC05]. Here, I refer to inequalities with a continuous variable
avour, in the sense of an arbitrary number of outcomes. An example of this type of
inequalities could be the entropic inequality given by N. J. Cerf and C. Adami [CA97].
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glement and non-locality were considered as a single feature of the theory. It
was only with the recent advent of quantum information science that the re-
lation between these concepts started to be considered in depth. On the one
hand, we know that entanglement is necessary for a state to benonlocal 2.
But, on the other hand, some entangled states admit a local-hidden-variable
(LHV) model [Wer89, TA06, APB+07]. The situation is even richer due to
the fact that there exist other meaningful scenarios where sequences of mea-
surements [Pop95, Gis96] or the use of ancillary systems [Per96a, MLD08]
allow detecting hidden non-locality. More in general, the relation between
these concepts is still not fully understood. Clarifying this relation is highly
desirable, for it would lead us to ultimately grasp the very essence of quantum
correlations.

One way to tackle this problem is by studying the relation between non-
locality and other concepts regularly related to entanglement, such as par-
tial transposition. Let me recall some ideas about the partial transposition
discussed in Chapter 2. The positivity of the partial transposition (PPT)
represents a necessary condition for a state to be separable[Per96b]. Indeed,
partial transposition is just the simplest example of positive maps, linear
maps that are useful for the detection of mixed-state entanglement [HHH96].
A second fundamental result on the connection between partial transposi-
tion and entanglement was to notice that all PPT states are non-distillable
[HHH98]. In other words, if an entangled state is PPT, it is impossible
to extract pure-state entanglement out of it by local operations assisted by
classical communication (LOCC), even if the parties are allowed to perform
operations on many copies of the state. Guided by the similarities between
the processes of entanglement distillation [BDSW96] and extraction of hid-
den non-locality, Peres conjectured [Per99] that any statehaving a positive
partial transposition should admit an LHV model. Equivalently, any state vi-
olating a Bell inequality should have a negative partial transposition (NPT).

Proving Peres' conjecture in full generality represents one of the open
challenges in quantum information theory. The proof of thisconjecture has
been achieved for some particular cases up to now: labeling the nonlocality
scenario as is customary by the numbers (n; m; o), meaning that n parties
can choose amongm measurement settings ofo outcomes each, the most
general proof obtained so far was for correlation functionsBell inequalities
in the (n; 2; 2) case [WW01a]3. Increasing the number of settings per part or
the number of outcomes per setting are the natural extensions of this result.

2Remember the discussion about non-locality and Bell inequalities made in chapter 2.
3A related, and perhaps more physical question is whether theviolation of a Bell

inequality implies entanglement distillability. This con nection has also been proven in the
(n,2,2) scenario for correlation Bell inequalities [ASW02, Aci02, Mas06].
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Here I will follow the last approach and show that the CFRD inequality
with two arbitrary quadrature measurements in each site is not violated for
PPT states. To the best of my knowledge, this is the �rst result on the
connection between Bell violation and partial transposition for CV systems,
which corresponds to the (n; 2; o) with o ! 1 scenario.

In this chapter I will start by introducing the CFRD inequali ty for arbi-
trary quadratures and proving that any state violating the inequality must
necessarily be NPT. The key point in the demonstration is theShchukin
and Vogel (SV) NPT criterion [SV05, SV06, MP06], which will be briey de-
scribed. I then proceed to show that no two-mode quantum state can violate
the generalized CFRD inequality. The present �nding were reached with A.
Salles and A. Ac��n.

5.1 The CFRD inequality

In Ref. [CFRD07], the authors present a general Bell inequality for CV
systems. They use the fact that the variance of any function of random
variables must necessarily be positive. Thus, by choosing functions of local
observables one can get discrepancies between the quantum and the classical
predictions just using the fact that in the quantum case these observables
are given by Hermitian operators (usually satisfying non-trivial commuta-
tion relations), while in an LHV scenario the observables are just numbers,
given a priori by the hidden variables (and obviously commute with each
other). Interestingly, this idea can lead to strong Bell inequalities as it is
the case of the Mermin, Ardehali, Belinskii and Klyshko (MABK) inequal-
ity [Mer90, Ard92, BK93]. More importantly for the present discussion, the
CFRD approach works for unbounded observables as well, leading to Bell
inequalities for continuous variable systems.

Consider a complex functionCn of local real observablesf X k ; Ykg, where
k labels the di�erent parties, de�ned as:

Cn = ~X n + i ~Yn =
nY

k=1

(X k + iYk); (5.1)

Applying the positivity of the variance of both its real ( ~X n ) and imaginary
( ~Yn ) part, and assuming LHV (i.e.: setting commutators to zero) we ob-
tain [CFRD07]:

h~X n i 2 + h~Yn i 2 �

*
nY

k=1

(X 2
k + Y 2

k )

+

: (5.2)
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This inequality must be satis�ed by LHV models for any set of observables
f X k ; Ykg, regardless of their spectrum.

If we now choose for each site orthogonal quadratures de�nedin terms of
the annihilation (creation) operatorsâk (ây

k) as:

X̂ k = âke� i� k + ây
kei� k ;

Ŷk = âke� i (� k + sk �= 2) + ây
kei (� k + sk �= 2);

(5.3)

wheresk 2 f� 1; 1g, and denoteÂk(1) = âk andÂk(� 1) = ây
k , inequality (5.2)

becomes: �
�
�
�
�

*
nY

k=1

Âk(sk)

+ �
�
�
�
�

2

�

*
nY

k=1

�
ây

k âk +
1
2

� +

: (5.4)

I will be �rst concerned with this family of inequalities, parameterized by
the choice of thesk . Note that the inequality is independent of the choice of
relative phases� k .

In Ref. [CFRD07] it was shown that the GHZ-like state

jGHZ n i =
1
2

(j0i 
 n=2 j1i 
 n=2 + j0i 
 n=2 j1i 
 n=2)

violates the inequality (5.4) with the choicesk = 1 for 1 � k � n=2 and
sk = � 1 for n=2 + 1 � k � n, whenevern � 10. Moreover it was also shown
that the this violation grows exponentially with the number of subsystems.

As we will see all states violating the inequality (5.4) mustbe NPT ac-
cording to some bipartition. In order to prove this fact I will need to recall
the Shchukin and Vogel's (SV) NPT criterion [SV05, SV06, MP06].

5.2 SV criterion

A necessary and su�cient condition for the positivity of the partial trans-
pose of a CV state, given in terms of matrices of moments, was introduced
and further generalized to the multipartite case in Refs.[SV05, SV06, MP06].
When dealing with many parties, one must analyze the positivity of the par-
tial transposition for a given bipartition of the system. I will say that a state
is PPT when it is PPT according toall bipartitions. Let me briey introduce
the SV criterion for the multipartite scenario.

For each bipartition of the system, which I will label by the set of parties
that is chosen to be transposedI , a matrix of momentsM I is constructed.
The elements of this matrix are given by:

M I
st =

*
Y

i 2 I

âyqi
i âpi

i âyk i
i âl i

i

Y

i 2 �I

âyl i
i âk i

i âypi
i âqi

i

+

; (5.5)
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wherek = ( k1; : : : ; kn) and l = ( l1; : : : ; ln ) correspond to row indexs, andp =
(p1; : : : ; pn ) and q = ( q1; : : : ; qn) correspond to column indext, with some
prescribed ordering that is not relevant for the present purposes (see [SV05,
SV06] for details); and�I denotes the complement ofI , that is, those parties
that are not transposed. I stress that, for �xed row and column indices,
the ordering of the operators entering the corresponding matrix element will
depend on the bipartition I .

Shchukin and Vogel's criterion says that, for a state to be PPT according
to bipartition I , all principal minors of M I should be nonnegative4. For
the state to be PPT according toall bipartitions, all principal minors of
all matrices M I must be nonnegative, for all nontrivial bipartitions I . By
nontrivial bipartitions it is meant the exclusion of the bipartition labeled by
I = ; , as well as that labeled byI = N , the entire set, both corresponding
to no transposition at all. In these cases, the criterion speaks about the
positivity of the state itself, instead of its partial transposition.

5.3 Nonlocality implies NPT

I am now in the position of proving that any state violating the CFRD
quadrature inequality (5.4) is necessarily NPT. As a sake ofsimplicity I will
�rst consider the case of orthogonal quadratures. Then, in the next section,
I will move to the most general case of arbitrary measurementdirections. I
begin by expanding the products in the RHS of inequality (5.4) as follows:

*
Y

k

�
N̂k +

1
2

� +

=
1
2n

+
1

2n� 1

nX

i 1=1

D
N̂ i 1

E
+

1
2n� 2

nX

i 1=1

nX

i 2>i 1

D
N̂ i 1N̂ i 2

E
+ : : :

: : : +
1
2

nX

i 1=1

nX

i 2>i 1

� � �
nX

i n � 1>i n � 2

D
N̂ i 1 N̂ i 2 � � � N̂ i n � 1

E
+

D
N̂1N̂2 � � � N̂n

E
;

(5.6)

where the number operators de�ned aŝNk � ây
k âk were used. Take all but

the last term on the RHS of eq. (5.6) and call their sumS2, so that:

*
Y

k

�
N̂k +

1
2

� +

= S2 +

*
Y

k

N̂k

+

: (5.7)

4The principal minors of a matrix M I are the determinants of the submatrices obtained
by picking out some rows and columns ofM I , while guaranteeing that whenever we choose
to pick row j , we also pick the correspondingcolumn j .
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Note that S2 is a nonnegative quantity, since it is given by a sum of expecta-
tion values of products of number operators, which are always nonnegative.
The inequality (5.4) can now be rewritten as follows:

*
Y

k

N̂k

+

�

*
Y

k

Âk(sk)

+ *
Y

k

Âk(� sk)

+

� � S2; (5.8)

where I used the fact thatÂy
k(sk) = Âk(� sk).

The key point in the proof is to realize that, for any choice ofthe pa-
rameterssk , the left-hand side (LHS) of eq. (5.8) is just one of the principal
minors ofM I , provided we choose the bipartitionI appropriately. The prin-
cipal minor we should look at is:

D I =

�
�
�
�
�
�

1
DQ

k Âk(sk)
E

DQ
k Âk(� sk)

E
� I

�
�
�
�
�
�
; (5.9)

where � I depends on the bipartitionI , and which we want to take the form
� I =

DQ
k N̂k

E
.

Looking at the elements of the matrix of momentsM I given by eq. (5.5),
we note that the indices labeling the diagonal element that has one creation
operator ây

k and one annihilation operatorâk in normal order are lk = 1,
kk = 0, pk = 0 and qk = 1. The corresponding upper right element is in turn
labeled, for thek part, by lk = 0, kk = 0, pk = 0 and qk = 1. If we have the
choice of settingsk = � 1 we want this to correspond to a creation operator
ây

k appearing in this position, which means that our bipartition must be such
that I includes sitek. Conversely, if we have, for a di�erentk, sk = 1, site k
should not be in I .

Hence, if we choose the bipartition as that labeled byI including all sites
with setting sk = � 1, we get� I =

DQ
k N̂k

E
, and thus:

D I =

*
Y

k

N̂k

+

�

*
Y

k

Âk(sk)

+ *
Y

k

Âk(� sk)

+

: (5.10)

It follows that a violation of inequality (5.8) implies that D I < 0, and the
violating state must be NPT according to bipartition I , or simply NPT,
which concludes the proof.

Note that if all sk are equal to either 1 or� 1, this corresponds respectively
to I = ; or I = N , meaning no transposition at all. As I have mentioned
before, in this case the positivity of the minors speaks no longer of the pos-
itivity of the partial transpose of the state but of the positivity of the state
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itself. A violation for this choice of parameters, thus, would mean that the
state is not positive semide�nite, which is not physical.

5.4 Non-orthogonal quadratures

I now extend the previous result to the case in which two distinct, arbi-
trary quadratures are measured in each site. These quadratures are de�ned
as:

X̂ 0
k = X̂ k = âke� i� k + ây

kei� k ;

Ŷ 0
k = âke� i (� k + � k + s0

k �= 2) + ây
kei (� k + � k + s0

k �= 2);
(5.11)

where agains0
k 2 f� 1; 1g and � �= 2 < � k < �= 2 quanti�es the departure

from orthogonality. With these parameters all possible angle choices are
covered, noting that � k = � �= 2; �= 2 corresponds to measuring only a single
quadrature.

Instead of writing the new inequality as before in terms of the âk and ây
k

operators, I de�ne new operatorŝbk and b̂y
k as:

b̂k =
(X̂ 0

k + eis k �= 2Ŷ 0
k )ei� k

2
; b̂y

k =
(X̂ 0

k + e� is k �= 2Ŷ 0
k )e� i� k

2
; (5.12)

for s0
k = � 1, such that:

X̂ 0
k = b̂ke� i� k + b̂y

kei� k ;

Ŷ 0
k = b̂ke� i (� k + s0

k �= 2) + b̂y
kei (� k + s0

k �= 2);
(5.13)

thus mimicking the relation (5.3) between the orthogonal quadratures X̂ k

and Ŷk and the operatorsâk and ây
k . Computing the commutation relations

for these new operators, we arrive at [b̂k ; b̂y
k ] = cos� k , independently of the

s0
k .

Noting that equation (5.13) has exactly the same form as (5.3), and taking
into account that the commutators are neglected in derivingthe inequalities,
we can write the CFRD inequality (5.2) for thenon-orthogonalquadratures
X̂ 0

k and Ŷ 0
k in terms of the b̂k and b̂y

k operators as:

�
�
�
�
�

*
Y

k

B̂k(sk)

+ �
�
�
�
�

2

�

*
Y

k

�
b̂y

k b̂k +
1
2

� +

; (5.14)

where nowB̂k(1) = b̂k and B̂k(� 1) = b̂y
k .
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Despite having reached an inequality identical in form to (5.4), I am yet
not entitled to make any statements about the state being PPTor not, since
inequality (5.14) is given in terms of operators with di�erent commutation
relations. Let me then proceed with a further de�nition:

ĉk =
1

p
cos� k

b̂k ; ĉy
k =

1
p

cos� k
b̂y

k ; (5.15)

recalling that � �= 2 < � k < �= 2 and hence cos� k > 0. These new operators
satisfy the standard commutation relations [^ck ; ĉy

k ] = 1.
Rewriting inequality (5.14) in terms of ĉk and ĉy

k , we get:

�
�
�
�
�

*
Y

k

p
cos� kĈk(sk)

+ �
�
�
�
�

2

�

*
Y

k

�
cos� k ĉy

k ĉk +
1
2

� +

; (5.16)

once more withĈk(1) = ĉk and Ĉk(� 1) = ĉy
k . Expanding the RHS as before,

we can rewrite the inequality as:
*

Y

k

N̂ 0
k

+

�

*
Y

k

Ĉk(s0
k)

+ *
Y

k

Ĉk(� s0
k)

+

� � S02; (5.17)

where nowN̂ 0
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E�
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(5.18)

Applying the same reasoning as before allows to generalize the result for the
case of two arbitrary quadratures per site.

5.5 Relevance of the CFRD inequality

In this section I will show that, in the case of two parties, the CFRD
inequality is never violated for measurements on two quadratures per site.
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Thus, in spite of its elegance and conceptual beauty, at present there is no
feasible scheme5 producing a violation of the CFRD inequality. This remains
as an interesting open question.

Let me start by considering systems of two parties with measurements on
arbitrary quadratures. Applying the positivity of the vari ance for the real
and imaginary parts ofC2 (see (5.1)) without neglecting the terms containing
commutators we get:

h~X 2i 2 + h~Y2i 2 �

*
2Y

k=1

(X 2
k + Y 2

k )

+

| {z }
� 2

� � h [X 1; Y1][X 2; Y2]i (5.19)

The Bell inequality (5.2) follows by setting the right-handside (RHS) of this
inequality to zero, and we are left with� 2 � 0, since for LHV models all
commutators are null. So, in order to have a violation we needto �nd a
state such that � 2 > 0. I am going to show that this never happens with the
choice (5.11).

Choosing (5.11) the RHS of (5.19) becomes 4s1s2 cos� 1 cos� 2, so we have
� 2 � 4s1s2 cos� 1 cos� 2. If the parameters are chosen to be di�erent,i.e.:
s1 = � s2 = 1 (or equivalently s1 = � s2 = � 1), we have that � 2 �
� 4 cos� 1 cos� 2 < 0 for all quantum states, and then there is no violation
in this case. As we have previously shown for arbitraryn, no violation can
take place for the case in which the parameters are equal,s1 = s2.

5.6 Concuding remarks

The results presented here have consequences both from a fundamental
and a practical point of view. First the Peres' conjecture was extended to
a scenario involving measurements with an arbitrary numberof outcomes.
This gives more support for the belief that the impossibility of distilling en-
tanglement is intimately linked to the existence of a local hidden model for a
given state. Second, CV Bell inequalities suitable for practical tests are very
desired due to the high control attained in CV photonic experiments. How-
ever we have discarded the possibility of using these inequalities for testing
two mode non-locality. Moreover, out of the family of multipartite inequali-
ties, we also discarded those for which allsk equal, showing that no quantum

5A feasible scheme could, for instance, consist of (i) a stateof a small number of modes
whose preparation requires a few non-Gaussian operations and (ii) homodyne measure-
ments.
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state can violate them. A future research could involve the study of CV Bell
inequalities involving more measurements per site [SV08].



Chapter 6

Geometrically induced singular
behavior of entanglement

A geometrical structure follows directly from the de�nition of quantum
states: the mathematical set of quantum states is convex andclosed. More-
over, since convex combinations of separable states are also separable, these
states form a convex set interior to the set of all quantum states. Apart
from these direct facts, subtler questions concerning the geometry of quan-
tum states may arise [BZ06]. In this chapter I will focus on the following
problems: what is the shape of such sets? Are the boundary of these sets
smooth? Do they present singularities? Apart from these abstract questions
I will discuss a more physical query: Is there any consequence of the geometry
of quantum states in physical phenomena?

Entanglement is tightly linked to geometry [BZ06]. For instance, many
of the recent attempts to quantify quantum correlations arebased on the
de�nition of some distance between entangled states and theset of classically
correlated states [PV05]. The main goal here is to develop a general approach
to investigate the e�ects of geometry on entanglement. I will show that the
non-trivial shape of the boundary of the separable states' set - which is
shown to exhibit singularities - induces singular behaviour of entanglement
in several physical processes, ranging from state transferdynamics to spin-
chain-ground-state properties [RVF+04, RVF+05, OPM06]. An experiment
with linear optics was implemented to simulate this e�ect and verify the
theoretical predictions.

The results covered in this chapter were developed in collaboration with
P.L. Saldanha, O. Cosme, F.G.S.L. Brand~ao, C.H. Monken, S.P�adua, M. F.
Santos, and M. O. Terra Cunha.
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6.1 The random robustness as a geometric
microscope

A geometric way to quantify entanglement is to see how far - using some
de�nition of distance on the state space - an entangled stateis from the
set of k-separable statesSk . This has been carried over for a variety of
notions of distance, generating di�erent measures of entanglement [HHHH07,
PV05]. As seen in Chapter 2, one of these geometric quanti�ers is the random
robustness,RR (2.14). The physical motivation behind its de�nition is clear:
� represents a mixture of� with the random state � = I=D , and RR (� )
quanti�es how much of this noise must be added to� in order to obtain a
k-separable state. The main result of this section is to show that Rk

R can be
used to investigate the shape of the boundary ofSk , @Sk .

Take an entangled state depending smoothly on one parameterq and
compute Rk

R as a function ofq. The one-parameter density matrices� (q)
can be seen as a curve in the set of quantum states as shown in Fig. 6.1.
Singularities at @Sk will show up as singularities inRk

R (� (q)), as if we were
probing the geometry ofSk with a\microscope". This statement is general
for any �nite dimension and will be formalized by the contrapositive:

Proposition 1 If @Sk is non-singular, thenRk
R (� (q)) is also non-singular.

A formal proof of this result can be found in Appendix B. Let meinsist on
the interpretation: Proposition 1 means that any singularity in Rk

R for a well
chosen path� (q) reects singularities in @Sk .

From this point on, I will specialize on the situation for twoqubits, which
is related to the performed experiment described here. I will come back to
higher dimensional systems in the �nal remarks. For two-qubit systems,
Ref. [BV06] shows that the Random Robustness is proportional to the Neg-
ativity ( N (� )). It turns out that, in this particular case, an optimal entan-
glement witnessWopt satisfying (2.19) is proportional to the partial trans-
position of the projector onto the eigenspace of the negative eigenvalue of
� TB 1 [LKCH00]. Using this fact we can conclude that for every two-qubit
entangled state� [BV06],

2N (� ) = RR (� ) = � min
W 2W

Tr( W � ); (6.1)

whereM is the set of entanglement witnessesW with Tr W = 4.

1Remember that � TB denotes the partial transposition of � .
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Figure 6.1: Probing @S. The curved line represents the path� (q) followed
by � when parameterq is changed. For each value ofq, RR is measured
(dotted lines). It is worth noting that Sk can present singular points in its
shape and to remember that the \true" picture is much subtler, given the
large dimensionality of the state space, even in the simplest two-qubit case
[BZ06].
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6.2 Where do these singularities appear?

At this point we might ask some natural questions. Is there infact any
singularity in the shape ofSk? In the a�rmative case, does this singularity
appear in any physical setup? I proceed to answer positivelyboth ques-
tions by showing physical processes where a singularity in@S2 is revealed by
monitoring the entanglement of a given two-qubit system.

6.2.1 Entanglement swapping

First, let me consider a general system of four qubitsa, b, A, and B,
subject to the following Hamiltonian [COP+03]:

H = H aA + H bB ; (6.2)

where
H aA =

!
2

� a
z +

!
2

� A
z +

g
2

(� a
� � A

+ + � a
+ � A

� ); (6.3)

and an equivalent forH bB . Here � + = ( � x + i� y)=2 and � � = ( � x � i� y)=2,
where � x , � y and � z are the usual Pauli matrices. This scenario can be
realized in systems like cavity QED [RMH01] and trapped ions[LBMW03].
Set the initial state to be j (t = 0) i = j� + i ab 
 j 	 + i AB , where qubitsabare
in the Bell state j� + i = ( j00i + j11i )=

p
2 and qubitsAB are in the orthogonal

Bell state j	 + i = ( j01i + j10i )=
p

2. Hamiltonian (6.2) induces a swapping
process which leads (in the interaction picture) to the following temporal
evolution for the subsystemAB , obtained by tracing out the subsystemab:

� AB (t) = qj	 + i h	 + j + (1 � q) j� + i h� + j ; (6.4)

whereq = cos2(gt). For this state the negativity reads

N (� AB (t)) =
1
2

maxf 1 � 2q;2q � 1g =
j1 � 2qj

2
: (6.5)

This function presents a singularity forq = 0:5 (gt = n�= 4, with n odd)
signaling then a singularity at@S2.

6.2.2 Bit-ip noisy channel

Another physical process which also produces the family of states (6.4)
is the following simple quantum communication task: Alice prepares a Bell
state j� + i and sends one qubit to Bob through a quantum channel; if this
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channel has a probabilityq of introducing a bit ip, and 1 � q of no error at
all, the state (6.4) is the output of the process2.

To illustrate the dynamics given by Eq. (6.4), an all-optical experiment
which reproduces the noisy channel described above was performed. The ex-
perimental setup is illustrated in Fig. 6.2. In the experiment, twin photons
maximally entangled in polarization are generated in a non-linear crystal
[KMW+05] and sent to an unbalanced Michelson interferometer. The ex-
periment works as follows: a two-photonj	 + i state is produced. While one
of the photons is sent directly to the detection stage the other goes to the
(unbalanced) interferometer. One of the arms of this interferometer does not
change the polarization of the photon, and if the photon wentthrough this
path the two photons would be detected inj	 + i . However if the photon went
through the other path its polarization would be rotated in such a way that
the �nal two-photon state would becomej� + i . A tomographic characteriza-
tion of the photonic states corresponding to these two extremal points was
then performed. The reconstructed density matrices are displayed in Fig.
6.3. These two possibilities are then incoherently recombined, thus allowing
the preparation of state (6.4). Each preparation yields a di�erent value for
q with the corresponding optimal witness given by

Wopt =
�

I � 2 j� + i h� + j ; for 0 � q � 1=2;
I � 2 j	 + i h	 + j ; for 1=2 � q � 1:

(6.6)

For the family of generated states these two observables arethe only candi-
dates of optimal entanglement witnesses. In a more general situation, if less
is known about the prepared state, much more candidate witnesses should
be measured. The results are displayed in Fig. 6.4. The blue curve in the
�gure shows the witnessed negativity measurement and its edge indicates the
existence of singularities at@S. This experimental result shows the abrupt
change in the optimal witness at the valueq = 1

2, which heralds the sin-
gularity in @S. As a proof of principle, each operatorW is measured for
the whole range ofq, which yields the points bellow zero in Fig. 6.4. Note
that the singularity occurs exactly for RR = 0 ( q = 1=2). According to
the present geometrical interpretation, this means the path followed by the
parameterized state� (q) touches the border ofS 3.

2The simplest way of drawing the complete line represented byEq. (6.4) is to consider
three di�erent initial conditions: from j� + i one obtains q 2 [0; 1=2), from j	 + i , q 2
(1=2; 1], and q = 1 =2 is a �xed point of this dynamical system.

3This result must not be a surprise, since it is well known that in the tetrahedron
generated by the Bell states (which we access in our experiment) the separable states form
a inscribed octahedron [HH96].
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Figure 6.2: Experimental setup.

6.2.3 Spin systems

The geometrical properties of entanglement discussed heregive new in-
sight into singularities found recently in the entanglement of condensed mat-
ter systems. Striking examples, dealing with entanglementproperties of cer-
tain spin-1

2 models subjected to a transverse magnetic �eldh, are described
in Refs. [RVF+04, RVF+05, OPM06]. In these works, the two-qubit re-
duced state shows a singularity in entanglement for a particular �eld value
hf far from the critical �eld of the respective model. As correlation func-
tions, ground-state energy, and even reduced density matrices are all smooth
at hf , there was no clear origin for these singularities. Our results o�er an
explanation by interpreting the non-analyticities exhibited by entanglement
as a consequence of geometric singularities at@S4.

6.3 Concluding remarks

As previously mentioned,Rk
R can be used to probe@Sk in any �nite di-

mensional system. For example, a previous work showed a singular behavior

4Although the results of Refs. [RVF+04, RVF+05, OPM06] were obtained in terms of
the concurrence, a completely analogous result holds for the negativity as well.
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Figure 6.3: The reconstructed density matrices corresponding (ideally) to
the states j� + i (A. real and B. imaginary parts) and j	 + i (C. real and D.
imaginary parts). The attained �delity for these states are, respectively,
F� + � h � + j � j� + i � (92 � 3)% andF	 + � h 	 + j � j	 + i � (96 � 3)%.
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Figure 6.4: Measurement of the mean value of both operators described in
(6.6) for the full range 0� q � 1. EachW is expanded as a linear combina-
tion of products of local operators which are then measured independently.
The blue continuous line corresponds to the theoretical value ofN (� (q)) for
the state � (q) = qj	 + i h	 + j + (1 � q) j� + i h� + j. Note that each W only
witnesses entanglement for a restricted range ofq values as predicted by the
theory. The local singularity of @Sis evidenced by the abrupt change of
optimal W. Experimental errors are within the dots' sizes.
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of RR in three qubits systems [BV06]. Within the scope of the present dis-
cussion, we can interpret it as originated by a singularity at the border of the
respective separable set. Note, however, that in this case,due to the higher
dimensionality of the system, the singularity at@Soccurs in the interior of
the set of density matrices (not at its border), withRR showing a singularity
at a positive value.

To sum up, I have presented a method for probing the shape of the set of
separable states. Singularities in this set were found and connected to non-
analytical behavior of entanglement in di�erent physical systems. It is an
interesting open question to �nd physical implications of such singularities.





Chapter 7

Scaling laws for the decay of
multiqubit entanglement

Entanglement has been identi�ed as a key resource for many potential
practical applications, such as quantum computation, quantum teleportation
and quantum cryptography [NC00]. Being it a resource, it is of fundamental
importance to study the entanglement properties of quantumstates in re-
alistic situations, where the system unavoidably looses its coherence due to
interactions with the environment.

In the simplest case of two qubits a peculiar dynamical feature of en-
tangled states has been found: even when the constituent parts of an en-
tangled state decay asymptotically in time, entanglement may disappear
at a �nite time [SK02, CMB04, DB04, Dio03, Dio03, DH04, YE04,YE06,
YE07, SMDZ07, Ter07, YE07, AJ07, AMH+07]. The phenomenon of�nite-
time disentanglement, also known as entanglement sudden death (ESD)
[AMH+07, YE04, AJ07, YE07], illustrates the fact that the global behav-
ior of an entangled system, under the e�ect of local environments, may be
markedly di�erent from the individual and local behavior of its constituents.

Since the advantages of using quantum-mechanical systems to informa-
tion and communication tasks is only apparent in the case of large-scale in-
formation processing, it is fundamental to understand the scaling properties
of disentanglement for multiparticle systems. Important steps in this direc-
tion were given in Refs. [SK02, CMB04, DB04]. In particular,it was shown
in Ref. [SK02] that (i) balanced GHZ states,j	 i = ( j0i 
 N + j1i 
 N )=

p
2,

subject to the action of individual depolarization [NC00],undergo ESD, (ii)
that the last bipartitions to loose entanglement are the most-balanced ones,
and (iii) that the time at which such entanglement disappears grows with
the number N of particles in the system. Soon afterwards it was shown in
Ref. [DB04] that the �rst bipartitions to loose entanglement are the least-
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balanced ones (one particle vs. the others), the time at which this happens
decreasing withN . A natural question arises from these considerations: is
the time for which entanglement vanishes a truly physically-relevant quantity
to assess the robustness of multi-particle entanglement?

In this chapter I will describe the achievements I have made together with
L. Aolita, R. Chaves, L. Davidovich and A. Ac��n on this subject. We have
shown that, for an important family of genuine-multipartite entangled states,
the answer for the last question is no. For several kinds of decoherence, we
derived analytical expressions for the time of disappearance of bipartite en-
tanglement, which in several instances is found to increasewith N . However,
the time at which bipartite entanglement becomes arbitrarily small decreases
with the number of particles, independently of ESD. This implies that for
multi-particle systems, the amount of entanglement can become too small
for any practical application long before it vanishes. In addition, for some
speci�c cases, we were able to characterize not only bipartite entanglement
but also to attest full separability of the states. As a byproduct we showed
that in several cases the action of the environment can naturally lead to
bound entangled states [HHH98], in the sense that, for a period of time, it
is not possible to extract pure-state entanglement from thesystem through
local operations and classical communication, even thoughthe state is still
entangled.

The exemplary states we analyzed the robustness of multipartite entan-
glement are generalized GHZ states:

j	 0i = � j0i 
 N + � j1i 
 N ; (7.1)

with � and � 2 C such that j� j2 + j� j2 = 1. Therefore, the present results
also constitute a generalization of those of Refs. [SK02, DB04]. Although the
generalized GHZ states represent just a restricted class ofstates, the study
of their entanglement properties is important in its own right: these can be
seen as simple models of the Schr•odinger-cat state [Sch35], they are crucial
for communication problems [BVK98, HBB99, DP99], and such states have
been experimentally produced in atomic [LKS+05] and photonic systems
[LZG+07] of up to six particles.

7.1 Decoherence models

The following three paradigmatic types of noisy channels were studied:
depolarization, dephasing, and a thermal bath at arbitrarytemperature (gen-
eralized amplitude-damping channel). ConsiderN qubits of ground statej0i
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and excited statej1i without mutual interaction, each one individually cou-
pled to its own noisy environment. The dynamics of thei th qubit, 1 � i � N ,
is governed by a master equation that gives rise to a completely positive trace-
preserving map (or channel)Ei describing the evolution as� i = Ei � 0i , where
� 0i and � i are, respectively, the initial and evolved reduced states of the i th
subsystem [NC00].

7.1.1 Generalized Amplitude Damping Channel

The generalized amplitude damping (GAD) cannel is given, inthe Born-
Markov approximation, via its Kraus representation by [NC00, YE07]

EGAD
i � i = E0� i E

y
0 + E1� i E

y
1 + E2� i E

y
2 + E3� i E

y
3; (7.2)

with

E0 �

r
n + 1
2n + 1

(j0i h0j j +
p

1 � pj1i h1j);

E1 �

r
n + 1
2n + 1

pj0i h1j ;

E2 �

r
n

2n + 1
(
p

1 � p j0i h0j j + j1i h1j)

and

E3 �

r
n

2n + 1
pj1i h0j

being its Kraus operators. Heren is the mean number of excitations in the
bath, p � p(t) � 1 � e� 1

2  (2n+1) t is the probability of the qubit exchanging a
quantum with the bath at time t, and  is the zero-temperature dissipation
rate. Channel (7.2) is a generalization to �nite temperature of the purely
dissipative amplitude damping channel (AD), which is obtainen from (7.2)
in the zero- temperature limit n = 0. On the other hand, the purely di�usive
case is obtained from (7.2) in the composite limitn ! 1 ,  ! 0, and
n = �, where � is the di�usion constant.

7.1.2 Depolarizing Channel

The depolarizing channel (D) describes the situation in which the i th
qubit remains untouched with probability 1 � p, or is depolarized (white
noise)|meaning that its state is taken to the maximally mixed state|with
probability p. It can be expressed as

ED
i � i = (1 � p)� i + ( p)I=2; (7.3)

where I is the identity operator.
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7.1.3 Phase Damping Channel

Finally, the phase damping channel (PD) - also called dephasing - repre-
sents the situation in which there is loss of quantum coherence with proba-
bility p, but without any energy exchange. It is de�ned as

EPD
i � i = (1 � p)� i + p

�
j0i h0j j � i j0i h0j j + j1i h1j j � i j1i h1j j

�
: (7.4)

The parameterp in channels (7.2), (7.3) and (7.4) is a convenient parametriza-
tion of time: p = 0 refers to the initial time 0 and p = 1 refers to the
asymptotic t ! 1 limit.

The density matrix corresponding to the initial state,

� 0 � j 	 0i h	 0j (7.5)

= � j2(j0i h0j)
 N + j� j2(j1i h1j)
 N + �� � (j0i h1j)
 N + � � � (j1i h0j)
 N ;

evolves in time into a mixed state� given simply by the composition of all
N individual maps: � � E 1E2 ::: EN � 0, where, in what follows,Ei will either
be given by Eqs. (7.2), (7.3) or (7.4).

7.2 Entanglement sudden death

.
Here I will use the negativity as a quanti�er of entanglement[VW02]. As

commented in chapter 2, the negativity fails to quantify entanglement of some
entangled states (those ones with positive partial transposition) in dimensions
higher than six [Per96b, HHH96]. However, for the states considered here,
the task of calculating the negativity reduces to a four-dimensional problem.
So, in the considered cases, the negativity brings all the relevant information
about the separability in bipartitions of the states, i.e.,null negativity means
separability in the corresponding partition.

Application of channel (7.2) to every qubit multiplies the o�-diagonal el-
ements of� 0 by the factor (1� p)N=2, whereas application of channels (7.3) or
(7.4), by the factor (1� p)N . The diagonal terms (j0i h0j j )
 N and (j1i h1j j )
 N

in turn give rise to new diagonal terms of the form (j0i h0j j )
 N � k 
 (j1i h1j j )
 k ,
for 1 � k < N , and all permutations thereof, with coe�cients � k given be-
low. In what follows I present the main results concerning the entanglement
behavior of these states.
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Generalized amplitude-damping channel

Consider a bipartition k : N � k of the quantum state. For channel (7.2),
the coe�cients � GAD

k are given by

� GAD
k � j � j2xN � kyk + j� j2wN � kzk ; (7.6)

with

0 � x �
� pn

2n + 1
+ 1; y �

pn
2n + 1

; w �
p(n + 1)
2n + 1

and z �
� p(n + 1)

2n + 1
+ 1 � 1:

From them, the minimal eigenvalue of the states' partial transposition, � GAD
k (p),

is immediately obtained for the GAD channel1:

� GAD
k (p) � � k �

q
� 2

k � � k ; (7.7)

where

� k =
[� GAD

k (p) + � GAD
N � k (p)]

2
(7.8)

and
� k = � GAD

k (p)� GAD
N � k (p) � j �� j2(1 � p)N : (7.9)

One can see that

j� GAD
1 (p)j � j � GAD

2 (p)j � ::: � j � GAD
N
2

(p)j; (7.10)

for N even, and

j� GAD
1 (p)j � j � GAD

2 (p)j � ::: � j � GAD
N � 1

2
(p)j; (7.11)

for N odd.
For arbitrary temperature, the condition for disappearance of bipartite

entanglement, � GAD
k (p) = 0, is a polynomial equation of degree 2N . In

the purely dissipative casen = 0, a simple analytical solution yields the
corresponding critical probability for the amplitude-decay channel,pAD

c (with
� 6= 0):

pAD
c (k) = min f 1; j�=� j2=N g: (7.12)

For j� j < j� j this is always smaller than 1, meaning that bipartite entan-
glement disappears before the steady state is asymptotically reached. Thus,

1Since the analized states are permutationally invariant, � GAD
k will correspond to the

minimum eigenvalue of the state's partial transposition according to all possiblek : N � k
partitions. This is also true for the other channels.
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(7.12) is the direct generalization to the multiqubit case of the ESD condition
of Refs. [YE04, AMH+07] for two qubits subject to amplitude damping. A
remarkable feature about Eq. (7.12) is that it displays no dependence on the
number of qubits k of the sub-partition. The negativities corresponding to
bipartitions composed of di�erent numbers of qubits all vanish at the same
time, even though they follow di�erent evolutions. In Appendix D, I will
prove that at this point the state is fully separable.

For arbitrary temperature, it is enough to consider the casek = N=2,
as the entanglement corresponding to the most balanced bipartitions is the
last one to disappear (I takeN even from now on just for simplicity). The
condition � GAD

N=2 (p) = 0 reduces to a polynomial equation of degreeN , which
for the purely di�usive case yields:

pDi�
c (N=2) = 1 + 2 j�� j2=N �

q
1 + 4j�� j4=N : (7.13)

Depolarizing channel

Moving to the case of the depolirizing channel the negativity associated
to the most-balanced bipartition again is always higher than the others, while
the one corresponding to the least-balanced partition is the smallest one. The
critical probability for the disappearance of entanglement in the N=2 : N=2
partition is given by:

pD
c (N=2) = 1 � (1 + 4j�� j2=N )� 1=2: (7.14)

Note that (7.13) and (7.14) always lead to ESD, for�� 6= 0.

Phase damping channel

Finally, for the phase damping channel, whereas the o�-diagonal terms of
the density matrix evolve as mentioned before, all the diagonal ones remain
the same, with� PD

k � 0 for 1 � k � N � 1. In this case,

� PD
k (p) � �j �� j(1 � p)N : (7.15)

This expression is independent ofk, and therefore of the bipartition, and for
any �; � 6= 0 it vanishes only forp = 1, i.e., only in the asymptotic time limit,
when the state is completely separable:generalized GHZ states, subject to
dephasing, never experience ESD.
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7.3 The environment as a creator of bound
entanglement

Some e�ort has been recently done in order to understand whether bound
entangled (i.e. undistillable) states naturally arise from natural physical
processes [PFA07, TKGB07, FCGA08]. In this context, it has been found
that di�erent many-body models present thermal bound entangled states
[PFA07, TKGB07, FCGA08]. In this section I will show, in a conceptually
di�erent approach, that bound entanglement can also appearin dynamical
processes, namely decoherence.

For all channels here considered, the property

j� 1(p)j � j � 2(p)j � ::: � j � N
2

(p)j (7.16)

holds. Therefore, whenj� 1(p)j = 0, there may still be entanglement in the
global state for some time afterwards, as detected by other partitions. When
this happens, the state, even though entangled, is separable according to
every 1 : N � 1 partition, and then no entanglement can be distilled by
(single-particle) local operations.

An example of this is shown in Fig. 7.3, where the negativity for partitions
1 : N � 1 and N=2 : N=2 is plotted versusp, for N = 4 and � = 1=

p
2 = � ,

for channel D. After the 1 : 3 negativity vanishes, the 2 : 2 negativity remains
positive until p = pD

c (2) given by Eq. (7.14). Between these two values ofp,
the state is bound entangled since it is not separable but no entanglement can
be extracted from it locally. Therefore, the environment itself is a natural
generator of bound entanglement. Of course, this is not the case for channels
AD and PD, since for the former the state is fully separable atpAD

c (k) (see
Eq. (7.12) and Appendix D) while the latter never induces ESD.

7.4 Does the time of ESD really matter for
large N?

Inspection of critical probabilities (7.12), (7.13) and (7.14) shows that in
all three cases the ESD time grows withN . This might be interpreted as the
state's entanglement becoming more robust when the system's size increases.
However, what really matters is not that the initial entanglement does not
disappear but that a signi�cant fraction of it remains, either to be directly
used, or to be distilled without an excessively large overhead in resources.
The idea is clearly illustrated in Fig. 7.4, where the negativity corresponding
to the most-balanced partitions is plotted versusp for di�erent values of N .
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Figure 7.1: Negativity as a function ofp for a balanced,� = 1=
p

2 = � , four-
qubit GHZ state and independent depolarizing channels. A similar behavior
is observed with channel GAD withn 6= 0, but the e�ect is not so marked
(the smaller n, the weaker the e�ect).

Even though the ESD time increases withN , the time at which entanglement
becomes arbitrarily small decreases with it. The channel used in Fig. 7.4 is
the depolarizing channel, nevertheless the behavior is absolutely general, as
discussed in the following.

For an arbitrarily small real � > 0, and all states for whichj�� j 6= 0,
the critical probability p� at which � N=2(p� ) = � � N=2(0), becomes inversely
proportional to N in the limit of large N . For channel (7.2), this is shown
by setting k = N=2 in � GAD

N=2 (p), which simpli�es to

� GAD
N=2 (p) = �j �� j(1 � p)N=2 + j� j2xN=2yN=2 + j� j2wN=2zN=2: (7.17)

For any mean bath excitationn, xN=2 and zN=2 are at most of the same order
of magnitude as (1� p)N=2, whereasyN=2 and wN=2 are much smaller than
one. Therefore, for all states such thatj�� j 6= 0 we can neglect the last two
terms and approximate �GAD

N=2 (p) � �j �� j2(1 � p)N=2. Set now

� GAD
N=2 (p� ) = � � GAD

N=2 (0) ) � = (1 � p� )N=2 ) log(� ) =
N
2

log(1 � p� ): (7.18)

Sincep� � pGAD
c (N=2) � 1, we can approximate the logarithm on the right-

hand side of the last equality by its Taylor expansion up to �rst order in p�
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and write log(� ) = � N
2 p� , implying that

pGAD
� � � (2=N) log(� ): (7.19)

Similar reasonings, applied to channels (7.3) and (7.4), lead to

pD;PD
� (t) � � (1=N) log(� ): (7.20)

Eqs. (7.19) and (7.20) assess the robustness of the state's entanglement better
than the ESD time. Much before ESD, negativity becomes arbitrarily small.
The same behavior is observed for all studied channels, and all coe�cients � ,
� 6= 0, despite the fact that for some cases, like for instance for channel (7.4),
no ESD is observed. The presence of log� in the above expression shows that
our result is quite insensitive to the actual value of� � 1.

7.5 Concluding remarks

In this chapter I have probed the robustness of the entanglement of un-
balanced GHZ states of arbitrary number of particles subject to independent
environments. The states possess in general longer entanglement sudden
death time, the more particles in the system, but the time at which such en-
tanglement becomes arbitrarily small is inversely proportional to the number
of constituent particles. The latter time characterizes better the robustness of
the state's entanglement than the time at which ESD itself occurs. In several
cases the action of the environment can naturally lead to bound entangled
states. An open question still remains on how other genuinely multipartite
entangled states, such as W-type or graph states, behave. Our results sug-
gest that maintaining a signi�cant amount of multiqubit ent anglement in
macroscopic systems might be an even harder task than believed so far.
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Figure 7.2: Negativity versusp for N = 4, 40 and 400, for the depolirizing
channel and for the most balanced partitions. In this graphic � = 1=3
and � =

p
8=3, but the same behavior is displayed for all other parameters

and maps. The inset shows a magni�cation of the region in which j� D
2 (p)j

vanishes. Even thoughj� D
40(p)j and j� D

400(p)j cross the latter and vanish much
later, they become orders of magnitude smaller than their initial value long
before reaching the crossing point.



Chapter 8

Identical particle entanglement
in Fermionic systems

Quantum correlations can naturally appear due to the indistinguishable
character of quantum systems. For example, the state of a pair of identical
fermions is always antisymmetric, hence naturally entangled. This entangle-
ment comes from the indistinguishability of the fermions and can manifest
itself in one or more degrees of freedom, depending, for example, on the
spatial shape of the wave function [Ved03]. However, there is an interest-
ing ongoing debate on the possibility of using this strictlyspin-statistical
entanglement to perform quantum information tasks [ESBL04, GM04].

Usually, when talking about entanglement, one tends to ignore the role of
the measurement apparatus, always considering ideal situations. However,
there is no such a thing as an ideal detector, and the detectorbandwidth
a�ects the measurement of entanglement. Furthermore, in the particular
case of identical particles, it is still not clear how the symmetry of detection
in external degrees of freedom a�ects the entanglement of the internal ones.

In this Chapter I will discuss the quantum correlations thatnaturally
arises in a non-interacting Fermi gas at zero temperature. In particular, I
will analyze how the measurement of external degrees of freedom can a�ect
the entanglement in internal degrees of freedom in this system. Then, I will
discuss how imperfect detections a�ect the observation of entanglement in
the fermionic gas.

A second step consists on proposing a scheme to extract entanglement
created solely by the Pauli exclusion principle. In this scheme two indepen-
dent photons excite non-interacting electrons in a semiconductor quantum
well. As the electrons relax to the bottom of the conduction band, the
Pauli exclusion principle forces quantum correlations between their spins. It
will be shown that after the electron-hole recombination this correlation is

73
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transferred to the emitted photons as entanglement in polarization, which
can subsequently be used for quantum information tasks. This proposal is
quite unorthodox in the sense that decoherence, usually viewed as an enemy
of entanglement, actually plays an important role in the extraction of this
identical particle entanglement.

The results contained in this chapter are due to collaborations with M.
F. Santos, M. O. Terra Cunha, L. Malard, F. Matinaga, C. Lunkes, and V.
Vedral.

8.1 Non-interacting Fermi gas

The symmetrization principle establishes that the quantumstate of two
identical particles must be symmetrized or anti-symmetrized according to the
particles species. However, in practice no physicist seemsto care about the
existence of other particles that do not take part of the system under study.
In his book, A. Peres analyzes this question and concludes that \ (...)it is
hardly conceivable that observable properties of the particles in our labora-
tory are a�ected by the possible existence on the Moon of another particle
of the same species(...)". However, until recently there was no formal study
concerning this belief. In what follows I will describe somesteps towards the
understanding of correlations arising due to the Pauli principle.

8.1.1 Perfect detection

Suppose we pick up two fermion from a non-interacting Fermi gas at
zero temperature, one at positionr and the other at r 0. What is the spin
entanglement between them? Vedral showed that the amount ofentangle-
ment between these particles decreases with increasing distance between
them [Ved03]. He also showed that there is a limit below whichany two
fermions extracted from the gas are certainly entangled. Inparticular, if
both fermions are extracted at the same position, then the Pauli exclusion
principle forces their spin to be maximally entangled in a typical antisym-
metric Bell state. In what follows I am going to briey review these results
and then present a clearer and more complete explanation to this behavior
through the analysis of the symmetry of the position detection.

The spin density matrix of these selected particles can be de�ned by

� ss0;tt 0 = h� 0j 	 y
t0(r 0)	 y

t (r )	 s0(r 0)	 s(r ) j� 0i ; (8.1)

where j� 0i is the ground state of the Fermi gas,

j� 0i = � s;pby
s(p) j0i ; (8.2)
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and the detection operator at positionr and spin s is given by,

	 y
s(r ) =

Z pf

0

d3p
(2� )3

e� ipr by
s(p): (8.3)

this integral is taken over the Fermi sphere with radiopf (the Fermi's mo-
mentum). The matrix elements (8.1) are second order correlation functions,
which correspond to measuring these two fermions at positions r and r 0.

The upper limit for guaranteed entanglement can be calculated applying
the Peres-Horodecki criterion [Per96b] to the state (8.1).The following con-
dition for the existence of entanglement holds:f 2 > 1

2, where f (r � r 0) =
3j 1(kF jr � r 0j)=(kF jr � r 0j), jr � r 0j is the distance between the fermions,
kF = pf =~ and j 1 is a spherical Bessel function. This condition establishesa
region 0� j r � r 0j < r e, where re is the solution of f 2 = 1=2, for which the
fermions are found to be entangled.

In order to get an interpretation of this result let me arriveat his result
in a di�erent way. De�ne new detection operators:

� +
ss0(r; r 0) �

(	 s(r )	 s0(r 0) + 	 s0(r )	 s(r 0))
p

2
; (8.4a)

� �
ss0(r; r 0) �

(	 s(r )	 s0(r 0) � 	 s0(r )	 s(r 0))
p

2
: (8.4b)

The operator � +
ss0(� �

ss0), detects the antisymmetric (symmetric) spatial part
and the symmetric (antisymmetric) spin part of fermion wavefunction.

In terms of these new operators, Eq.(8.1) becomes:

� ss0;tt 0 =
1
2

h� 0j[�
+ y
tt 0 (r; r 0) + � �y

tt 0 (r; r 0)][� +
ss0(r; r 0) + � �

ss0(r; r 0)]j� 0i (8.5)

Note that written in this way, the two-fermion density matrix is the sum of
four di�erent terms, two of which contain only symmetric andantisymmetric
spin detectors. The other two are the crossing terms, which vanish due to
the exclusion principle (spin and position of two fermions cannot be both
symmetric or antisymmetric). The remaining terms are:

� sym =
1
2

h� 0j � + y
tt 0 (r; r 0)� +

ss0(r; r 0) j� 0i ; (8.6a)

� asym =
1
2

h� 0j � �y
tt 0 (r; r 0)� �

ss0(r; r 0) j� 0i : (8.6b)

Here � sym takes into consideration only the symmetric spin function (there-
fore, it is related to the detection of the antisymmetric part of the spa-
tial wavefunction) while � asym contains only the antisymmetric spin function



76 IDENTICAL PARTICLE ENTANGLEMENT

(therefore related to the detection of the symmetric part ofthe spatial wave-
function). The density matrix can be rewritten as:

� = � asym + � sym

=
Z Z

dpdp01
2

8
>><

>>:
(1 + ei (p� p0)( r � r 0))

0

B
B
@

1 � 1
� 1 1

1

C
C
A

+ (1 � ei (p� p0)( r � r 0))

0

B
B
@

2
1 1
1 1

2

1

C
C
A

9
>>=

>>;
: (8.7)

First, note that, as expected, forr = r 0, the antisymmetric spatial function
goes to zero, and the spin wavefunction has to be antisymmetric (�rst term
in Eq.(8.7)). For r � r 0 6= 0 both parts contribute. Note, however, that the
symmetric spin density matrix can be viewed as an equal weight mixture of
the three triplet components, and has no entanglement at all1. The spin state
in Eq.(8.7) represents a convex combination of singlet state and the equal
mixture of triplet states. It will have entanglement i� the f raction of singlet is
su�ciently larger than the fraction of triplets. In the limi t r � r 0 � 1=kF , as
the integrals on Eq.(8.7) are performed over momenta below the (momentum
equivalent of) Fermi surface the momentum dependent terms oscillate too
fast, and average to zero. Therefore, the spin density matrix becomes just
the identity ( � ts � t0s0). This behavior can be seen as a smooth transition from
a quantum statistics (Fermi-Dirac) to a classical one (Maxwell-Boltzmann).

8.1.2 Imperfect detection

An interesting question arises when considering non-punctual (non-ideal)
position detections, i.e. more realistic apparatus that detect the position
of those fermions with some incertitude. Instead of Eq.(8.3), the detection
operator should be written as the general �eld operator:

	 s(r ) =
Z Z

eipr 00
D(r � r 00)bs(p)dr00dp: (8.8)

The perfect position measurement situation is the particular case of Eq.(8.8)
corresponding toD(r � r 00) = � (r � r 00). However, if D(r � r 00) has some

1This again can be seen from the Peres-Horodecki criterion.
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position uncertainty, like, for example, if it is describedby a gaussian with
spread� ,

D(r � r 00) =
1

p
2��

e
�j r � r 00j 2

2� 2 ; (8.9)

then, the �eld operators become

	 s(r ) =
1

p
2��

Z Z
eipr 00

e
�j r � r 00j 2

2� 2 bs(p)dr00dp: (8.10)

These operators, when substituted back in Eq.(8.1), give:

� ss0;tt 0 = � st � s0t0f (d; � ) + � st0� s0tg(d; � ); (8.11a)

with d = jr � r 0j,

f (d; � ) =
�

erf(�p f )
�

� 2

; (8.11b)

g(d; � ) =
e

� d2

2� 2

� 2
jerf(�p f �

id
2�

) � erf(�
id
2�

)j2; (8.11c)

where erf(x) is the \error function", de�ned via:

erf(x) �
2

p
�

Z x

0
e� t2

dt: (8.11d)

In order to make clearer the behavior of entanglement in relation to
changes ind and � we can compute the negativity of the state� (d; �; p f ):

N (� ) = max f 0; �
f � 2g
4f � 2g

g (8.12)

This function is plotted in Fig. 8.1 for some values of� .
Note that, for imperfect position detection, the entanglement decreases

as the detectors become apart from each other, but increasesif the spread
in the detection becomes larger. The fact that inaccuracy inthe detection
increases entanglement may seem surprising at �rst sight. However it has
to be noted that as our knowledge in position gets worst, our knowledge in
momentum gets better. In the limit of in�nite spread, both detectors become
perfect momentum detectors (centered atp = 0, see Eq.(8.9)), which means
again that their spin wavefunction should be totally antisymmetrized, hence
they are found in the antisymmetric Bell state. It is important to stress that
Eq.(8.8) describes a coherent combination of localized �eld operators instead
of a statistical average of them. That is the reason for the in�nite spread
limit be a momentum-localized detector instead of just a vague \there is a
particle somewhere".
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Figure 8.1: N (� ) vs. d for pf = 1 and � = 1 (red), � = 2 (green) and � = 4
(blue).

8.2 Useful entanglement from the Pauli prin-
ciple

In this section I would like to make the previous discussion less abstract
and propose a way of observing this fermionic entanglement in a realistic
system.

Consider that one excites a semi-conductor from its electronic ground
state by exactly promoting two electrons to the conduction band. These two
electrons will be described by some quantum state with momentum and spin
distribution. Due to phonon scattering, no matter the initial polarization,
in a short time scale the spin state will be essentially random (supposing
no energy di�erence between the possible polarizations). With the condition
that relaxation time ( � D ) is much shorter than recombination time (� eh), the
electronic momentum distribution will tend to the bottom of the band. In
fact, the quantum state will tend to the \ground state" of the band, which
can be viewed as null momentum spin singlet, due to the Pauli principle.
By the same time, but in a statistically independent way, electrons in the
valence band also relax, with the net e�ect of promoting the holes to the top
of the band. Also supposing that the relaxation time of the holes is much
shorter than recombination time, there will be a singlet of holes in the top of
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the valence band. In this scheme, quantum correlations werecreated by the
Pauli principle through relaxation. The remaining question is whether these
correlations can be used to implement some quantum protocol.

Continuing with the argument, let me assume a selection rulefor the
radiative decay: electrons with spin +1=2 (� 1=2) can only decay emitting
photons circularly polarized to the right (left) (Fig. ??B). After both elec-
trons have decayed we will therefore obtain two photons in a polarization
entangled state, which can be used for di�erent quantum information pro-
tocols. I emphasize that this state is only obtained due to the existence of
fermionic entanglement between the electrons.

The idea described in the previous paragraphs can indeed be implemented
in solid state physics. Two independent photons coming fromsingle photon
sources are used to create two electron-hole pairs of di�erent k0s and spins
in a semiconductor quantum well. The system rapidly relax tothe bottom
of the conduction band. The electrons then emit photons recombining with
the holes in the valence band. For the argument presented before to hold,
conduction and valence bands relaxation processes have to be much faster
than the recombination time, which is the case in semiconductors (typically
� D � 10� 12s and � eh � 10� 9s [Fat05]). Note that the emitted photons will
be entangled in polarization no matter in which direction they are emitted.
However, in order to enhance the spontaneous recombinationprocess and to
give a preferred direction for the emission (also enhancingthe probability of
detection), the semiconductor can be placed inside an optical cavity [Yam91,
WNIA92, BMYI91]. After escaping the cavity, these photons can be used for
quantum information.

8.2.1 Selection rules

Take semiconductors of the group III-V [YC96] for which the conduction
(valence) band has orbital angular momentumL = 0 ( L = 1). The valence
band has two branches corresponding to heavy-holes (Jz = � 3=2) and light-
holes (Jz = � 1=2) which are degenerate atk = 0 for bulk semiconductors.
But in a semiconductor quantum well this degeneracy is lifted o� due to the
con�nement in one of the directions. Each new valence band still has the
usual free-particle dispersion relation (E / k2) around the energy gap, but
the gap itself is smaller for the heavy-hole electrons. Therefore, by shining
light of the proper frequency, it is possible to selectivelyexcite electrons from
the heavy-hole band without ever touching the light-hole ones (see Fig. 8.2).
The electrons are excited by dipolar interaction, which means that there will
be a selection rule that couples each eigenstate in the heavy-hole band to a
partner in the conduction band, depending only on the photonpolarization
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(see Fig. 8.3).

Figure 8.2: Band structure for the semiconductor quantum well -
For each value ofk there can exist just two electrons according to the Pauli
principle.

8.2.2 From fermions to photons

Let me now treat in some details what was described above. Suppose
we have a semiconductor quantum well with exact two excitations with well
de�ned momentum k above the ground state (full valence band). Consider
the creation operator of two particles (electron + hole):

	 y
s(k) = ey

s(k)hy
s(� k); (8.13)

where ey
s(k) (resp. hy

s(k)) creates an electron (hole) in the conduction (va-
lence) band with logical spins and momentum k. The spin notation is
utilized to emphasize correlation in the creation process,and the follow-
ing correspondence between the real spins with the logical basis is implied
through the text:

j0i j1i
electrons -1/2 1/2

holes -3/2 3/2
:

The spin state I am going to analize can be described by a spin density
operator for the electrons and holes determined (up to normalization) by the
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Figure 8.3: Selection rules - The following transitions are considered:
Jz = � 3

2 $ Jz = � 1
2 through an emission/absorption of a� + photon, and

Jz = 3
2 $ Jz = 1

2 through an emission/absorption of a� � photon.

correlation function [Ved03, DDW06]:

� rr 0ss0 = h� 0j 	 r (k)	 r 0(k)	 y
s(k)	 y

s0(k) j� 0i (8.14)

=
D

� (e)
0

�
�
� er (k)er 0(k)ey

s(k)ey
s0(k)

�
�
� � (e)

0

E

�
D

� (h)
0

�
�
� hr (� k)hr 0(� k)hy

s(� k)hy
s0(� k)

�
�
� � (h)

0

E
;

where
�
�
� � (e)

0

E � �
�
� � (h)

0

E�
denotes the electron (hole) initial state (vacuum)

and j� 0i is their tensor product. As the operators obey fermionic anti-
commutation rules

[ey
s(k); es0(k0)]+ = � ss0� (k � k0) (8.15)

(the same forhs(k)), we have

� rr 0ss0 = ( � rs 0� r 0s � � rs � r 0s0)2 : (8.16)

Note that I have used a shortened label to represent the matrix elements
(8.14). In the electron-hole-electron-hole ordering, this operator is a density
matrix representing the (unnormalized) state

j i =

�
�
�
� �

1
2

; �
3
2

; +
1
2

; +
3
2

�
+

�
�
�
�+

1
2

; +
3
2

; �
1
2

; �
3
2

�
: (8.17)

In order to enhance the emission process, and also to have control over the
emitted photons, the sample can be placed within an optical cavity in reso-
nance with the transitions we are interested in [Yam91, WNIA92, BMYI91].
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By the selection rules described above, the emitted photonsstate is

j� � � + i + j� + � � i ; (8.18)

which is a maximally entangled Bell state. Note that it is essential that the
electrons have the same momentum for the creation of a maximally entangled
pair of photons.

We are interested in creating entangled photons from independent ones,
and that is where decoherence plays an important role. Independent photons
create electrons of di�erentk0s. However, the incoherent energy losses to the
network phonons end up dragging those electrons to the conduction-band
ground state (similarly the holes), where both of them have the samek = 0
momentum! Taking into consideration the selectivity of thedecay process,
the photons will indeed be emitted in the Bell state of Eq. (8.18).

8.2.3 Some imperfections

The scenario that was discussed up to now is pretty much idealized. It is
important to stress, however, that one very robust point in favor of this pro-
posal is its independency on the speci�c model of decoherence used. When-
ever the imposed conditions on the time scales are ful�lled,the state of the
system before recombination will be very close to the one here described.
And so the state of the emitted photons.

One posible way to mimic the e�ects of the imperfection in this approach
is to consider a broadening in the momentum distribution, and also an im-
perfect coincidence of the momenta. This can be taken into account by
modifying Eq. (8.13) to

	 y
ss(k) =

ZZ
f (kj � k)f (ekj � ek)ey

s(kj )hy
s(ekj )dkj dekj : (8.19)

This operator creates an electron with spins and momentum distribution
given by the function f (kj � k), and a hole with spin s and momentum
distribution given by f (ekj � ek). Later I will associate k = � ek 2. With this
operator, Eq. (8.14) can be rewritten as

2This association reects the fact that an electron moving to a certain direction is
equivalent to a hole moving to the opposite way.
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� rr 0ss0 =
Z

f � (k0 � k)f � (k1 � k0)f (k2 � k)f (k3 � k0)
D

� (e)
0

�
�
� er (k0)er 0(k1)ey

s(k2)e
y
s0(k3)

�
�
� � (e)

0

E
dk0:::dk3

�
Z

f � (ek0 � ek)f � (ek1 � ek0)f (ek2 � ek)f (ek3 � ek0)
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Anti-commutation rules (8.15) imply that the only non-null matrix ele-
ments are:

� 0000 = � 1111 (8.21a)

= ( L(k; k0) � M (k; k0))( eL(ek; ek0) � fM (ek; ek0)) ;

� 0101 = � 1010 = L(k; k0)eL(ek; ek0); (8.21b)

� 0110 = � 1001 = M (k; k0) fM (ek; ek0); (8.21c)

where

L(k; k0) =
Z

dk0dk1jf (k0 � k)j2jf (k1 � k0)j2; (8.22a)

M (k; k0) =
Z

dk0dk1f � (k0 � k)f � (k1 � k0)f (k1 � k)f (k0 � k0); (8.22b)

with similar expressions foreL(ek; ek0) and fM (ek; ek0) by changing k 7! ek and
k0 7! ek0.

The emitted photons (non-normalized) polarization state will thus be:

� =

0

B
B
B
@

(L � M )( eL � fM )
L eL M fM

M fM L eL
(L � M )( eL � fM )

1

C
C
C
A

; (8.23)

where I leave blank the null entries. Note that whenk = k0 and ek = ek0

hold, L = M and eL = fM , giving a maximally entangled photonic state. No-
tice the generality of this result: state (8.23) is written in terms of arbitrary
momentum distributions of the electrons before the decaying process. For
illustration, a chart of the entanglement between the two photons (charac-
terized by the negativity) versus the di�erence in momentumdistribution of
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Figure 8.4: Photonic entanglement (negativity) versusd = jk � k0j. Green-
dotted line: � = 2, black-solid line: � = 4, red-dashed curve:� = 6, where �
is a measure of the width of the momentum distribution, assumed the same
for electrons and holes (see Eq. (8.24)). We see that the greater the spread
in the momentum, the higher the entanglement between the photons. This is
due to the fact that wider momentum distributions blur the di�erence in k's,
so that once again it is impossible to distinguish the electrons by momentum.

the decaying electrons is displayed in Fig. 8.4. I have chosen a Lorentzian
distribution of spread � centered ink (k0) for the momentum distributions,
i.e.:

f (kj � k) =
�

� [(kj � k)2 + � 2]
: (8.24)

8.3 Concluding remarks

In conclusion it was shown that the measurement apparatus plays a cen-
tral role in the entanglement of identical particles. The fact that entangle-
ment increases because of broadening in detection can soundweird at �rst.
However it is important to say that the detections discussedhere are done
in a coherent way (as in most of real cases).

Concerning the semiconductor proposal, I stress once againthat the ori-
gin of the entanglement lies in the femionic nature of the electrons. This gives
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a decisive positive answer to the question whether identical-particle entan-
glement is useful for quantum information purposes. Speci�cally, identical-
particle entanglement can in fact be extracted and converted to usual en-
tanglement, and one important ingredient in this convertibility is the use of
more than one degree of freedom.

Finally, I would like to emphasize the role played by the coupling to the
environment in the discussed scheme. Usually, decoherenceis seen as the road
from quantum to classical, implying information loss and entropy creation,
which makes it a plague for quantum information tasks. However, a very
special situation occurs when decoherence is dictated by a null temperature
heat reservoir: after a transient time, the system asymptotically approaches
its ground state. Whenever the ground state is nondegenerate, the result of
null temperature decoherence is a pure state. When the system in question is
composed, decoherence leads to statistical mixture, whichtends to wash out
entanglement. However, if, at zero temperature, the nondegenerate ground
state is also entangled, decoherence can actually create entangled states!
That is a central part of the proposed scheme: here, decoherence plays the
crucial role of washing out the distinguishable origin of the input photons,
allowing the extraction of entanglement from the Pauli principle.

Let me �nish this chapter with a more practical issue. Ideally, the de-
scribed setup could be viewed as a practical entangling machine, where the
input is a two photon unentangled state and the output an entangled state.
Moreover, this machine would work on demand,i.e.: whenever we input two
independent photons we receive back two entangled photons.





Chapter 9

Conclusions and Perspectives

Understanding entanglement is one of the biggest challenges physicists
are faced with. A lot of e�ort has been employed to get a complete theory of
this resource, and also to apply it in real tasks. There are still many questions
involving entanglement, and some of them were not even citedin this thesis.
The experimental production and use of entanglement in di�erent systems
and scales, the computational hardness of classically simulating quantum
e�ects, and the link between entanglement and quantum phasetransitions
are just few examples of these questions. All these points make entanglement
characterization one of the most interdisciplinary branches of Physics.

In this thesis I have presented some results on the characterization of
entanglement I could address during the last years. Although the present
contribution represents just few steps on entanglement theory, I hope they
can help to give a better understanding and to motivate future research on
this �eld. I would like to �nish this text by raising some futu re research that
could follow the presented ideas.

I have shown a connection between two entanglement quanti�ers, the gen-
eralized robustness of entanglement (Rg) and the geometric measure (EGME ).
This was made trough a lower bound toRg based onEGME . It would be
interesting to �nd additional examples where this bound is tight and to seek
for the geometrical explanation of this fact. Furthermore whenever we have
a way of calculating one of these measures, this gives a boundfor the other.
This might be useful because these quantities have also operational appeals
[HMM+05, Bra07]. Seeking for relations among other entanglement quan-
ti�ers is also desirable as it can lead us to a better understanding on the
di�erent forms of entanglement quanti�cation.

Chapter 4 presented improvements on two big dilemmas concerning en-
tanglement and non-locality. The �rst is the Peres' conjecture that undistil-
lable states never violate a Bell inequality. I have shown a partial proof of
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this conjecture for the CFRD inequality by showing that all violating states
are NPT. A complementary result would be to prove that all violating states
are distillable. Further generalizations could consider other Bell inequalities,
including those ones involving many measurement settings per site. On the
other hand, �nding a bound entangled state which violates a Bell inequality
would disprove Peres' conjecture1. The second big issue on this theme is to
�nd appropriate tests to prove non-locality, i.e.: loop-hole free experiments.
Quadratures of the electromagnetic �eld is a promising degree of freedom
where this tests could be proposed. First, photons can be distributed over
long distances using optical �bers or even in free-space. Second, quadrature
measurements attain incredibly high e�ciencies through homodyning.

Concerning the study of the geometry of entanglement I hope the pre-
sented method for investigating the boundary features of separable sets can
give us a better idea on the mathematical description of quantum states.
It is interesting that singularities in these sets appear inphysical phenom-
ena. An open question consists in looking for physical consequences of these
singularities (if any).

Many are the open questions on the entanglement properties of decohered
states. First, a whole line of research consists in the studyof the quantum-
classical transition, and entanglement certainly plays a major role in this
arena. Furthermore, as said before, it is crucial to understand the degra-
dation of entanglement in real protocols since it is a valuable resource. In
this sense further studies should include other multipartite states (e.g.: W,
cluster, and CV states) and other decoherence models. In theend the big
query is whether scalable quantum computation is possible.

Finally, the entanglement properties of many body systems is among the
hottest lines of research nowadays. The Fermi gas is a �rst approximation
for many systems and it is then important to understand the features of this
model. Moreover, we could propose a realistic system where the discussed
e�ects could be seen. In my opinion, an implementation of this scheme, if
feasible, would be interesting not only from a fundamental but also from a
practical point of view.

1Here I mean bound entangled among all the partitions.



Appendix A

Multipartite entanglement

In this chapter I will discuss in more details the di�erent kinds of multi-
partite entanglement.

When several parts are involved we can have di�erent notionsof entan-
glement, depending on the partition we apply to this state [DC00, DCT99,
ABLS01, EG06]. For example, in a tripartite scenario, some states can be
written as

� ABC = � AB 
 � C ; (A.1)

where � AB is an entangled state. This state is separable according to the
partition AB jC and can be built by joint operations on particlesA and B
and independent single operations onC. Hence it is said that such a� ABC

has no tripartite entanglement.
We could go further in the classi�cation of entanglement andde�ne convex

combinations of states like (A.1),i.e.:

� =
X

i

pi � AB
i 
 � C

i + qi � A
i 
 � BC

i + r i � AC
i 
 � B

i ; (A.2)

with pi ; qi ; r i � 0 and
P

i pi + qi + r i = 1. To build these states we again do
not need to perform joint operations on the three particles,but instead can
use just (classically) correlated two-particle operations. Because of that fact,
states (A.2) do not havegenuine tripartite entanglement. However some
them do have entanglement among the three particles, since they cannot be
written as (A.1) for example. This classi�cation can be extended for states
composed by more than three parties straightforwardly.

Note that each one of these sets is convex. Fully separable states form a
subset of the set of biseparable states like (A.1), which by the other hand is
a subset of the set of states like (A.2), and so on. We thus havea hierarchy
of entangled states, and we can see the set of quantum states as composed
having an onion-like structure (see Fig.A.1).
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Figure A.1: State space structure.

As commented in Chapter 1, when talking about multipartite entangle-
ment we can de�ne di�erent kinds of separability. Suppose a state � can
be written as a convex combination of states which are product of k tensor
factors. The state� is then said to be ak-separable state. One should note
that in a system ofn parts, n-separability means that none of the subsystems
share quantum correlations with the others. Besides, everystate is trivially
1-separable. The set ofk-separable states will be denoted bySk . It is clear
that Sn � Sn� 1 � ::: � S1 = D, whereD denotes the set of density operators.



Appendix B

Rk
R as a detector of singularities

in Sk

In this Appendix we aim to prove Proposition 1, in Chapter 6. This can
be done in a more general way through the following result:

Proposition 2 Let D be a closed, convex set. LetS � D also be closed
and convex, with� a point in the interior of S. If @Sis a Cm manifold and
the states� (q) describe aCm curve in D with no points in the interior of S
and obeying the condition that the tangent vector� 0(q) is never parallel to
� � � (q), then RR (� (q)) is also aCm function.

One must remember that a manifold is calledCm if it can be parameterized
by functions with continuous derivatives up to orderm [?]. The reader can
changeCm by smooth, in the usual sense ofC1 , with almost no loss (actually,
we use smooth throughout this Letter in the less precise sense of \as regular
as necessary"). Other topological remarks before the proof: the fact that S
has interior points implies that S and D have the same dimensionality (since
there is an open ball ofD contained in S), and the proof will use the notion
of (topological) cone, which simply means the union of all segments from a
given point V to each point of a given setA: this is called the cone ofA with
vertex V.
Proof: The geometrical situation leads to the cone, given by (p; q) 7! p � +
(1 � p) � (q), p 2 [0; 1]. The condition on the tangent vector (together with
the fact that � is interior to S, while � (q) has no point in this interior) is
su�cient for this cone to be Cm , except at the vertex� , at least locally in q.

As S is bounded and convex, and� is in its interior, every straight line
from � crosses@Sexactly once. As� (q) has no point in the interior of S,
this crossing always happens for 0� p < 1. Denote this crossing value by
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pc (q). The curve q 7! pc (q) � + (1 � pc (q)) � (q) is Cm , implying pc is a Cm

function of q.
The random robustness is given byRR (� (q)) = pc

1� pc
. As pc < 1, we also

obtain that RR is a Cm function of q. �



Appendix C

Experimental Setup

In this appendix it will be shown the details of the setup usedin the
experiment described in Chapter 6.

Figure C.1: Experimental setup.

The state source is composed by a 2mm-thick BBO (� -BaB2O4) nonlinear
crystal (C1) pumped by a cw krypton laser operating at 413nm, generating
photon pairs at 826nm by type II spontaneous parametric down-conversion.
Crystal C1 is cut and oriented to generate either one of the polarization
entangled Bell statesj	 � i or j	 + i . Walk-o� and phase compensation is
provided by the half-wave plate H0 followed by a 1mm-thick BBO crystal
(C2) [KMW+05], together with two 1mm-thick crystalline quartz plates (Z)
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inserted in one of the down-converted photon paths. The unconverted laser
beam transmitted by crystal C1 is discarded by means of a dichroic mirror
(U). The detection stages are composed by photon counting diode modules
D1 and D2, preceded by 8nm FWHM interference �lters F1 and F2 centered
at 825nm, and by circular apertures A1 of 1.6mm; and A2 of 3.0mm; . Single
and coincidence counts with 5ns resolving time are registered by a computer
controlled electronic module (CC). Polarization analyzers are composed by
quarter-wave plates Q1 and Q2, half-wave plates H1 and H2, followed by
polarizing cubes P1 and P2. The State Source produces statej	 � i . For
each pair, the photon emerging in the upper path goes straight to the po-
larization analyzer and to the detection stage 1. The lower path photon is
directed by mirror M3 through the circular aperture A3 into the state mixer
(an unbalanced Michelson interferometer), composed by thebeam splitter
BS, mirrors M4 and M5, quarter-wave plates Q4 and Q5, variable circular
apertures A4 and A5, and by the half-wave plate H3, whose purpose is to
compensate for an unwanted slight polarization rotation caused by the beam
splitter. The quarter-wave plate Q4 is switched o� which means that if the
lower photon follows path labeled 4, there is no change to itspolarization
and the half-wave plate H3 changes the state toj	 + i . On the other hand,
if the lower photon follows path labeled 5, Q5 is oriented with the fast axis
at 45� in order to ip its polarization. The path length di�erence, 130mm,
is much larger than the coherence length of the down-converted �elds, en-
suring an incoherent recombination at BS. The pair detectedby CC is in
state qj	 + ih	 + j + (1 � q)j� + ih� + j whereq is de�ned by the relative sizes of
apertures A4 and A5.



Appendix D

Full separability of GHZ states
under the Amplitude Damping
Channel

Here we prove that the amplitude damping channel leads the state (7.1)
to a fully separable state when all of its bipartite entanglements vanish.

Proof: First of all note that the evolved density matrix can be written
as � = j� j2(j0i h0j j )
 N + � s, where � s is an unnormalized state. The goal
is to show that � s is fully separable. This will be done by de�ning a fully
separable state� and showing alocal measurement protocol, a local POVM
[?], which transforms� into � s with certain probability. Because only local
operations are applied we will conclude that� s, and then � , must be fully
separable.

The (unnormalized) state� is de�ned as� = � 2(1� p)N f I +( j0i h1j j )
 N +
(j1i h0j j )
 N g, being I the 2N � 2N identity matrix. State � is GHZ-diagonal
(see def. in Ref. [DC00]) and all of its negativities are null. Hence, by the
D•ur-Cirac-Tarrach criterion [DCT99], � is fully separable. Consider, for each

qubit i , the local POVM f A(i )
m g2

m=1 with elements A(i )
1 = � (

q
p

1� p j0i h0j j +

j1i h1j j ), where� is such that A(i )y

1 A(i )
1 � I , and A(i )y

2 A(i )
2 = I � A(i )y

1 A(i )
1 . One

can see that by applying this POVM for every qubit of state� , when the
measurement outcome ism = 1 (corresponding toA1) for all the qubits, the
�nal state is nothing but � s.�
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Appendix E

Resumen

La mec�anica cu�antica fue concebida como una teor��a capazde describir
los fen�omenos f��sicos a nivel at�omico. R�apidamente fueaplicada en otros
casos como el estudio de la dispersi�on de las part��culas y de la interacci�on
entre la luz y la materia.

La primera cr��tica importante a la teor��a cu�antica fue hecha por Einstein,
Podolski y Rosen (EPR) en su art��culo titulado "Can quantum-mechanical
description of physical reality be considered complete?" [EPR35]. Estos au-
tores resaltan que a pesar de que la teor��a cu�antica acierta al describir cor-
rectamente muchos fen�omenos f��sicos, tambi�en permite hacer predicciones
extra~nas como la acci�on instant�anea entre objetos distantes. En el fondo, el
argumento expuesto por EPR estaba basado en la posibilidad de tener un
estado entrelazado. Bas�andose en las criticas de EPR, Sch•odinger llam�o la
atenci�on sobre el hecho de que alguno estados cu�anticos pueden ser mejor
entendidos cuando son investigados como un todo y no a trav�es de cada uno
de sus subsistemas [Sch35].

Muchos a~nos despu�es J. Bell puso esta discusi�on en un �ambito m�as �rme.
Aceptando la idea de realismo local introducida por EPR, Bell desarroll�o
sus famosas desigualdades incluyendo estad��sticas de medidas hechas en sis-
temas compuestos [Bel87]. A partir de entonces la discusi�on acerca de la
no-localidad de la mec�anica cu�antica pod��a ser hecha a unnivel experimen-
tal. Unos a~nos despu�es los primeros resultados experimentales usando las
desigualdades de Bell fueran reportados [FC72, FT76, AGG81, ADG82] y
dieron fuerza a la creencia de la no-localidad de la mec�anica cu�antica. Dado
estados que no son entrelazados nunca podr��an violar una desigualdad de
Bell, estas pruebas pueden ser vistas como las primeras observaciones exper-
imentales de entrelazamiento.

Hasta los a~nos 90, la discusi�on acerca del entrelazamiento se hizo a un
nivel m�as fundamental, el de los pilares mismos de la teor��a cu�antica. Fue
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despu�es de las primeras propuestas de protocolos de informaci�on cu�antica,
que el t�ermino "entrelazamiento" pas�o a tener una connotaci�on de "recurso",
capaz de proporcionar ventajas sobre las maneras cl�asicasde procesar infor-
maci�on [NC00, BEZ00]. En 1991, un protocolo de criptograf��a totalmente
basado en el entrelazamiento fue propuesto [Eke91]. Para entonces ya se
sab��a que el entrelazamiento no era algo necesario para garantizar la seguri-
dad de la comunicaci�on [BB84, BBD92]. Quiz�as fue el descubrimiento de la
teleportaci�on cu�antica el cambio mas grande en la teor��adel entrelazamiento
[BBC+93]. Desde entonces qued�o clara la importancia de este recurso para
aplicaciones pr�acticas.

A partir de ese momento la teor��a del entrelazamiento empez�o su propio
camino y gan�o el status de disciplina independiente. Entrelos objetivos prin-
cipales de la teor��a del entrelazamiento est�an el desarrollo de un formalismo
matem�atico que pueda describir este recurso, la b�usquedade sus aplicaciones,
la investigaci�on de la conexi�on del entrelazamiento con otros fen�omenos f��sicos
y, volviendo a aspectos m�as fundamentales, la importanciadel entrelaza-
miento para los fundamentos de la mec�anica cu�antica. Actualmente la liter-
atura acerca del entrelazamiento es enorme. El objetivo de esa tesis no es pro-
porcionar una revisi�on en este tema, pero contribuir con resultados originales.
Revisiones acerca del entrelazamiento pueden ser encontradas en las referen-
cias [HHHH07, AFOV07, PV05, Bru02, Ter02, PV98, Ver02, Eis01, EP03].
Las cuestiones abiertas acerca del entrelazamiento van desde su descripci�on
matem�atica hasta su utilizaci�on. Entre todos esos aspectos, en esta tesis yo
abord�e aqu�ellos que m�as me motivaron durante mi doctorado.

A pesar de que la de�nici�on matem�atica del entrelazamiento es sencilla,
el problema de determinar si un estado cu�antico general est�a entrelazado o
no es muy dif��cil [Ter02, HHHH07]. Una de las ramas m�as importantes de
la teor��a del entrelazamiento se centra en encontrar t�ecnicas que sean ca-
paces de resolver este problema. El paso siguiente, despu�es de determinar si
un estado est�a entrelazado, ser��a determinar la cantidadde entrelazamiento
presente en el sistema [PV98]. Para esto se usan los cuanti�cadores de entre-
lazamiento, un conjunto de reglas que se puede aplicar a un estado cu�antico
para decidir su contenido de entrelazamiento. Una de las primeras maneras
de cuanti�car el entrelazamiento fue determinar la capacidad de cada es-
tado en realizar tareas de informaci�on cu�antica [BBP+96,BDSW96]. Esta
forma de abordar el problema, a pesar de ser muy productiva depende pro-
fundamente de cada tarea en cuesti�on. Una manera m�as abstracta de tratar
este problema consiste en determinar un conjunto de reglas que un cuan-
ti�cador de entrelazamiento debe seguir, sin preocuparse por su signi�cado
f��sico [Vid00, VPRK97]. Finalmente, podemos tambi�en utilizar conceptos
geom�etricos para cuanti�car el entrelazamiento. Podemosorganizar los esta-



99

dos cu�anticos en conjuntos matem�aticos y de�nir distancias entre ellos. La
cantidad de entrelazamiento en un estado puede ser de�nida de esa manera
como la distancia entre ese estado y en conjunto de estados noentrelazados
[VPRK97, VP98].

Actualmente el n�umero de cuanti�cadores de entrelazamiento es muy
grande, as�� que entender sus propiedades y la informaci�onque contienen
son los objetivos m�as importantes de la teor��a del entrelazamiento. En
este sentido, encontrar relaciones entre cuanti�cadores podr��a darnos un
conocimiento mejor acerca de c�omo ordenar los estados cu�anticos con relaci�on
al contenido de entrelazamiento.

Con el desarrollo de la teor��a del entrelazamiento ese temaempez�o a es-
tar conectado con otros campos de la f��sica. El estudio del entrelazamiento
en modelos realistas nos permite obtener un conocimiento m�as adecuado de
varios fen�omenos f��sicos en sistemas de materia condensada, �optica y f��sica
at�omica [RMH01, LBMW03, KWN+07, AFOV07]. En ese sentido sehan
generado importantes cuestiones pr�acticas como >cu�al esel tipo de inter-
acci�on capaz de producir entrelazamiento? >C�omo el entrelazamiento cam-
bia en procesos din�amicos ideales? o >c�omo se comporta en presencia de
p�erdidas?.

Con relaci�on a esta �ultima pregunta, es fundamental entender como el
entrelazamiento cambia en situaciones reales donde siempre ocurren errores
en la preparaci�on de los estados o en su procesamiento. Varios estudios
conectando entrelazamiento y decoherencia han aparecido en los �ultimos a~nos
[Dio03, DH04, YE04, YE06, YE07, SMDZ07, Ter07, AJ07], pero muchas
cuestiones fundamentales necesitan respuesta todav��a. Una de ellas consiste
en entender el comportamiento de estados de muchas partes durante procesos
de decoherencia [SK02, CMB04, DB04, HDB05]. Desde un punto de vista
te�orico ese problema podr��a darnos un entendimiento mejor acerca de la
transici�on cl�asico-cu�antica. Desde un punto pr�actico, esa cuesti�on es crucial
pues las ventajas de utilizar sistemas cu�anticos para procesar la informaci�on
son considerables sobre todo en el l��mite del procesamiento de sistemas de
muchas par���culas.

Finalmente, la teor��a del entrelazamiento est�a casi todaconstruida para
part��cula distinguibles. Es decir, en el caso en el que podemos identi�car
(etiquetar) los subsistemas y de�nir operaciones individuales o locales con
precisi�on. Cuando tratamos con part��culas id�enticas elconcepto de entre-
lazamiento se torna m�as sutil pues la de�nici�on de operaciones locales se
torna vaga. Otro problema es que, en ese escenario, el entrelazamiento surge
gratuitamente. Por ejemplo, dos fermiones que est�an en el mismo sitio se
entrelazan (en un estado singlete) s�olamente por el hecho de seguir la es-
tad��stica fermi�onica. As��, no est�a claro c�omo describ ir ese tipo de correla-
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ciones cu�anticas, o si son �utiles para el procesamiento deinformaci�on, o
incluso si deber��amos llamarlas entrelazamiento.

E.1 Introducc��on a la teor��a del entrelazamiento

E.1.1 De�niciones

Los estados cu�anticos son descritos por operadores positivos de traza uni-
taria actuando en un espacio vectorialH llamado el espacio de estados. As��
un operador� 2 B(H) que representa un estado cu�antico satisface:

1. � � 0;

2. Tr( � ) = 1 :

Estos operadores son llamados operadores de densidad. Cualquier operador
de densidad puede ser escrito (de manera no �unica) como una combinaci�on
convexa de proyectores unidimensionales:

� =
X

i

pi j i i h i j ; (E.1)

donde X

i

pi = 1 and pi � 0: (E.2)

Un caso especial de la representaci�on (E.1) es cuandopi = 1 para alg�un i , en
este caso podemos escribir el estado como un solo proyector unidimensional,
i.e.:

� = j i i h i j : (E.3)

En ese caso,� es llamado estado puro. Estados puros son los puntos extremos
del conjunto de estados c�uanticos y representan aquellos sistemas acerca de
los cuales tenemos la m�axima informaci�on posible.

Si un sistema cu�antico est�a compuesto por varias partesA; B; :::; N tambi�en
lo representamos por un operador de densidad, pero ahora de�nido en un es-
pacio vectorialH dotado de una estructura tensorial:

H = H A 
 H B 
 ::: 
 H N ; (E.4)

dondeH A ; H B; :::; H N , representan los espacios de estados para cada parte.
La noci�on de entrelazamiento aparece en esos espacios compuestos. En

seguida presentar�e la de�nici�on de entrelazamiento parasistemas de dos
partes para despu�es generalizar para sistemas de muchas partes.
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De�nici�on - Separabilidad de estados bipartidos: Estados bipar-
tidos entrelazados son aquellos que no pueden ser escritos como una com-
binaci�on convexa de productos de operadores de densidad. Dicho de otra
forma, � 2 B(H A 
 H B) es entrelazado si y s�olo si

� 6=
X

i

pi � A
i 
 � B

i ; (E.5)

donde f pi g es una distribuci�on de probabilidades. Los estados que pueden
ser escritos como (E.5) son llamados estados separables.

Un ejemplo de un estado entrelazado esj� + i = ( j00i + j11i ) =
p

2.
En el caso de sistemas de dos partes tenemos solo que diferenciar estados

entrelazados de estados separables. Cuando hay muchas partes, un estado
puede tener entrelazamiento solamente entre algunas de laspartes. Un ejem-
plo es el estado

(j00i + j11i )
p

2



(j00i + j11i )
p

2
: (E.6)

Este tipo de estados posee entrelazamiento entre las dos primeras part��culas
y tambi�en entre las dos �ultimas, mientras que no hay entrelazamiento entre
esos dos bloques de part��culas. En ese contexto surgen maneras distintas
de entrelazar un sistema. Tenemos entonces que de�nir lak-separabilidad
[DCT99, DC00, ABLS01]:

De�nition 3 - k-separabilidad: Un estado cu�antico es llamadok-separable
si puede ser escrito como una combinaci�on convexa de estados que son un
producto de c�omo m�aximo k factores.

E.1.2 Detectando el entrelazamiento

Dado un estado general� , >c�omo podemos determinar si est�a entrelazado?
Inicialmente podr��amos intentar escribir � como en (E.5). Pero, como�
admite in�nitas representaciones por combinaciones convexas, la tarea de
buscar, entre todas las representaciones, si alguna es equivalente a (E.5) se
torna impracticable. Claramente tenemos que desarrollar m�etodos m�as e�-
caces para detectar el entrelazamiento. Siguiendo esa ideavarios criterios
de entrelazamientos fueron propuestos en los �ultimos a~nos [Ter02]. Desgraci-
adamente no hay una prueba de�nitiva para comprobar la separabilidad de
estados generales.

Entre los criterios de entrelazamiento m�as utilizados est�an:

� Desigualdades de Bell [Bel87, Ter00, WW01b, Gis07].
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� La decomposici�on de Schmidt [Sch07, EK95, NC00].

� El criterio de Peres-Horodecki [Per96b, HHH96]

� El criterio de Nielsen y Kempe [NK01].

� Testigos de entrelazamiento [HHH96, Ter00].

M�as criterios de entrelazamiento pueden ser encontrados en [HHHH07].

E.1.3 Cuanti�cando el entrelazamiento

Como el entrelazamiento empez�o a ser tratado como un recurso, se torn�o
fundamental cuanti�car este recurso para cada estado. Empezamos con un
ejemplo. El estadoj� + i = ( j00i + j11i )=

p
2 puede ser usado para teleportar

el estado de un qubit [BBC+93]. De esa manera decimos quej� + i tiene 1
ebit de entrelazamiento, y de�nimos esa cantidad como la unidad b�asica de
entrelazamiento. Pero >qu�e pasa si usamos otro estado parala teleportaci�on?

Muchos cuanti�cadores de entrelazamiento fueron propuestos en los �ultimos
a~nos. Adem�as hay distintas formas de abordar el problema de la cuanti�-
caci�on de entrelazamiento, siendo las m�as frecuentes basadas en las siguientes
ideas:

� Utilidad del estado: El estado j i tiene m�as entrelazamiento quej� i ,
si realiza de manera m�as adecuada alguna tarea. A pesar de que esta
forma de abordar el problema sea la m�as aplicada, depende dram�aticamente
de cada tarea elegida. As�� que a veces un estado es mejor parauna
tarea, pero peor para otras.

� Conversi�on entre estados:El estadoj i tiene m�as entrelazamiento que
j� i si podemos convertirj i en j� i a trav�es de operaciones locales y
comunicaci�on cl�asica (LOCC 1). Esa de�nici�on es natural pues no es
posible crear entrelazamiento por operaciones LOCC. El problema con
esa idea es que se conoce muy poco acerca de conversi�on de estados
mezcla [Jan02, LMD08]. Adem�as, en el caso de estados puros,algunos
estados no son convertibles [JP99].

� Enfoque geom�etrico: La cantidad de entrelazamiento de un estado es
dada por la distancia (en el espacio de estados) entre �el y suestado
separable m�as cercano. Nuevamente esta de�nici�on depende no solo de
los estados cu�anticos pero tambi�en de la medida de distancia utilizada.

1Del ingl�es local operations and classical communication.
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Ejemplos de cuanti�cadores de entrelazamiento pueden ser encontrados
en [PV05, HHHH07].

E.2 Contribuciones

En esa secci�on comentar�e las ideas acerca del entrelazamiento que pude
proponer junto con algunos colaboradores.

La medida Geom�etrica y la Robusteza del Entrelazamiento

Como he dicho anteriormente hay muchos cuanti�cadores de entrelaza-
miento. Encontrar relaciones entre ellos puede ayudarnos aclasi�carlos y a
entender mejor la informaci�on que ellos contienen. Se estabeleci�o relaciones
entre dos cuanti�cadores frecuentemente utilizados, la Medida Geom�etrica
(EGME

2) y la Robustez Generalizada del Entrelazamiento (Rg
3). El primero

posee una interpretaci�on geom�etrica clara: es la distancia entre el estado y
su estado separable m�as cercano. El ultimo fue inicialmente propuesto como
una medida de la cantidad de ruido que un estado puede tolerarhasta que
se vuelva separable.

Se puede ver queRg es siempre m�as grande queEGME . Un l��mite inferior
para Rg m�as preciso est�a basado en la pureza del estado cu�antico ysu pro-
ducto escalar m�aximo con un estado separable. Adem�as, en el caso de estados
puros, ese l��mite puede ser expresado en t�erminos deEGME . Finalmente es
posible identi�car casos donde ese limite es estricto.

El entrelazamiento de superposiciones

Supongamos dos estados puros,j	 i y j� i . >Existe una relaci�on entre
el entrelazamiento de la superposici�ona j	 i + bj� i y el entrelazamiento de
sus constituyentesj	 i y j� i ? Esta cuesti�on fue recientemente estudiada por
Linden, Popescu y Smolin en el caso de sistemas de dos partes.Ellos pudieron
mostrar l��mites superiores para el entrelazamiento de unasuperposici�on en
t�erminos del entrelazamiento de sus componentes [LPS06].

M. Terra Cunha, A. Ac��n y yo consideramos una posible generalizaci�on
del resultado de Linden, Popescu y Smolin para sistemas de muchas partes.
Nosotros encontramos l��mites para el entrelazamiento de superposiciones de
estados de muchas partes basados s�olo en el entrelazamiento de los estados
formadores. Se demostr�o que el l��mite es estricto para unafamilia de estados

2Del ingl�es Geometric Measure of Entanglement.
3Del ingl�es Generalizad Robustness of Entanglement.
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compuestos por un n�umero arbitrario de qubits. Adem�as nuestros resultados
tambi�en se extienden a un conjunto amplio de cuanti�cadores de entrelaza-
miento, incluyendo lanegatividad, la robustez del entrelazamientoy la medida
de la mejor aproximaci�on separable.

Entrelazamiento PPT y violaci�on de desigualdades de Bell p ara
variables continuas

Inspirado por las similitudes entre los procesos de destilaci�on del entre-
lazamiento [BDSW96] y la detecci�on de la no-localidad escondida [Pop95,
Per96a], A. Peres conjetur�o que todos los estados no distilables admiten una
descripci�on a trav�es de modelos realistas locales. O sea,esos estados no vi-
olan desigualdades de Bell. Esa conjetura fue demostrada apenas en el caso
donde dos medidas individuales bin�arias son aplicadas a unsistema de N
partes.

Recientemente una nueva desigualdad de Bell para variablescontinuas
utilizando operadores no-acotados fue propuesta [CFRD07]. Utilizando esa
desigualdad A. Salles, A. Ac��n y yo pudimos extender la conjetura de Peres
para el caso contin�uo y probar que todos los estados con una transposici�on
parcial positiva satisfacen la desigualdad.

Clari�cando la geometr��a del entrelazamiento

El conjunto de los estados cu�anticos es cerrado y convexo: combinaciones
convexas de estados cu�anticos son estados cu�anticos. El conjunto de los esta-
dos separables es un subconjunto, que tambi�en es cerrado y convexo. Adem�as
de esas caracter��sticas que son consecuencias directas dela de�nici�on de es-
tados cu�anticos y estados separables, otras preguntas surgen de ese an�alisis.
>C�omo es la forma de esos conjuntos? >Cu�al es su volumen? >C�omo carac-
terizar esas cantidades? >Est�an estas cantidades directamente relacionadas
con fen�omenos f��sicos?

En una colaboraci�on con M. Terra Cunha, M. F. Santos, F. Brand~ao,
P. Lima, O. Cosme, S. P�adua, y C. Monken, propusimos un m�etodo para
investigar la forma del conjunto de estados separables. Para ello utilizamos
un cuanti�cador de entrelazamiento llamadorobustez aleatoria del entrelaza-
miento. Ese cuanti�cador puede ser usado como un microscopio para investi-
gar la frontera del conjunto de estados separables. Adem�as, como esta inves-
tigaci�on puede ser hecha a un nivel experimental, llevamosa cabo un exper-
imento con fotones entrelazados para ilustrar nuestras predicciones te�oricas.
Singularidades en el conjunto de estados separables para dos qubits fueron
encontradas. Esas singularidades aparecen naturalmente en fen�omenos como
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la transferencia de entrelazamiento en sistemas de spines sujetos a campos
magn�eticos variables y en procesos de decoherencia.

Entrelazamiento de muchas part��culas y decoherencia

En el mundo real no es posible generar un estado cu�antico puro. Debido
a errores en la preparaci�on de los estados y ruido en su din�amica siempre
tratamos con estados mezcla. El entrelazamiento es muy sensible a esos
procesos ruidosos y esa es seguramente la principal di�cultad para la imple-
mentaci�on real de protocolos de informaci�on cu�antica. Adem�as el fen�omeno
de decoherencia est�a en la esencia de la transici�on entre el mundo cu�antico
y el cl�asico [Zur03]. En este sentido, entender como los estados cu�anticos se
comportan en presencia de ruido es importante no solamente desde un punto
de vista practico sino tambi�en fundamental.

Junto con L. Aolita, R. Chaves, L. Davidovich y A. Ac��n, estudiamos
el decaimiento del entrelazamiento de una familia importante de estados
cu�anticos, los estados GHZ compuestos por un numero arbitrario de qubits.
Varias fuentes de decoherencia interactuando independientemente con cada
part��cula fueron consideradas y leyes de escala para el decaimiento del entre-
lazamiento y para su tiempo de desaparici�on fueron obtenidas. Ese tiempo
crece con el tama~no del sistema. Sin embargo el entrelazamiento se vuelve ar-
bitrariamente peque~no mucho antes de desaparecer, en un tiempo que escala
inversamente con el n�umero de subsistemas. Adem�as, nosotros mostramos
que el decaimiento de estados GHZ puede llevar a estados de entrelazamiento
con�nado 4.

Entrelazamiento de part��culas id�enticas

Supongamos un gas de fermiones que no interact�uan a temperatura cero.
>Si tomamos dos de eses fermiones, estos est�an entrelazados? Junto con M.
Fran�ca, M. Terra Cunha, C. Lunkes y V. Vedral, hemos demostrado que la
respuesta a esa pregunta depende no s�olo de la posici�on de esas part��culas,
pero tambi�en de la manera (el detector) con que las escogemos. Primero
consideramos un medidor ideal para las part��culas y de�nimos operadores de
medida que detectan la simetr��a de la parte espacial y la parte de esp��n del
estado como una funci�on de la distancia entre las part��culas. Movi�endonos
a un escenario m�as realista consideramos aparatos que miden la posici�on de
las part��culas con una cierta imprecisi�on. Inesperadamente obtenemos que el
entrelazamiento de los fermiones pode crecer con la imprecisi�on de la medida.

4Del ingl�es bound entanglement.
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En ese mismo contexto, tambi�en consideramos el problema deutilizar
ese entrelazamiento de part��culas id�enticas. En ese problema L. Malard y
F. Matinaga se han unido a nuestro trabajo y con ellos hemos propuesto un
esquema que permite la extracci�on de entrelazamiento desde pozos cu�anticos
semiconductores. Dos fotones independientes excitan dos electrones que no
interact�uan en el semiconductor. Cuando los electrones serelajan movi�endose
hacia el fondo de la banda de conducci�on, el Princ��pio de Pauli fuerza correla-
ciones entre ellos. Despu�es de que esos electrones decaen hacia la banda de
valencia, esa correlaci�on es transferida a los fotones, que pueden ser entonces
utilizados para el procesamiento de informaci�on. Concluimos entonces que
<el entrelazamiento de part��culas id�enticas puede ser �util!.
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